Abstract
This Chapter reviews the literature on gravity balancing for parallel robots by using so-called constant-force generators. Parallel robots are formed by several kinematic chains connecting, in parallel, a fixed base to a moving end-effector. A constant-force generator is a mechanism that is able to exert, at a given point, a force having constant magnitude and direction. Gravity balancing of serial robots is a well established technique; conversely, application in parallel robotics is controversial. Indeed, the addition of gravity-balancing mechanisms to a parallel robot may worsen its dynamic behavior, as shown in some referenced works. In this Chapter, we introduce a taxonomy of constant-force generators proposed so far in the literature, including mass and spring balancing methods, toghether with more niche concepts. We also summarize design considerations of practical concern.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For conciseness, we only consider the most general case of mechanisms having three-dimensional motion; the case of planar motion can be derived as a sub-case, where each frame is defined by only two coordinate axes instead of three.
- 2.
Here, we implicitly assume the springs to be linear. Indeed, some works [25, 31, 32] employ torsional (angular) springs. In this case, the derivation of the potential energy is similar, replacing the stretched and rest lengths by corresponding angles \(\phi _j\) and \(\phi _{j,0}\); the spring stiffness \(k_j\) is then defined in angular units.
- 3.
Notice that the gravity force acting on the EE may vary after the payload is changed; some designs that allow the mechanism to adapt to changes of the EE total weight while keeping the global gravitational balance of the mechanism are reported in Subsect. 5.2.
- 4.
Notice that some authors [50] define instead the shaking force as the total force applied by the fixed ground to the mechanism; a similar notation applies then to the shaking moment.
- 5.
Here and in the following, R denotes a rotary joint, P a prismatic joint, U a universal joint and S a spherical joint; a line above each symbol (such as \(\overline{\mathrm {P}}\)) denotes that a joint is actuated.
- 6.
In this Chapter, we always implicitly assume \(g\ne 0\); indeed, for mass-balanced systems it can be readily seen that the formulas hold for any value of g. Therefore, a mechanism mass-balanced on Earth (\(g=9.80665\,\text {ms}^{-2}\)) retains its properties even in different gravity environments, such as in space or on the surface of other planets; this can be useful for designs targeted for space exploration.
- 7.
Without loss of generality, we assume all angles \(\phi \), \(\psi \), \(\alpha \), \(\beta \) and \(\theta \) to be in the range .
- 8.
Only two springs are employed, for simplicity, but more springs could be introduced; this provides greater freedom in design, but does not significantly change the results shown here. For instance, a spring between links 2 and 0 could be introduced; since link 2 and 1 move at the same angular speed, however, it can be shown that its effect is equivalent to that of a spring between links 1 and 0.
References
Merlet, J.P.: Parallel Robots. Solid Mechanics and Its Applications, vol. 128, pp. 274–275. Springer (2006). Chap. 8.6. https://doi.org/10.1007/1-4020-4133-0
Arakelian, V.H.: Gravity compensation in robotics. Adv. Robot. 30(2), 79–96 (2016). https://doi.org/10.1080/01691864.2015.1090334
Baradat, C., Arakelian, V.H., Briot, S., Guegan, S.: Design and prototyping of a new balancing mechanism for spatial parallel manipulators. J. Mech. Des. 130(7), 072305 (2008). https://doi.org/10.1115/1.2901057
Chheta, Y.R., Joshi, R.M., Gotewal, K.K., Manoah, S.M.: A review on passive gravity compensation. In: Proceedings of the IEEE 2017 ICECA, Coimbatore, India, vol. 1, pp 184–189. IEEE (2017). https://doi.org/10.1109/ICECA.2017.8203668
Steinthorsson, A.T., Aguirre, M.E., Dunning, G., Herder, J.L.: Review, categorization and comparison of 1 DOF static balancers. In: Proceedings of the ASME 2015 IDETC/CIE, Boston, USA, vol. 5A, p. V05AT08A018. ASME (2015). https://doi.org/10.1115/DETC2015-47217
Lu, Q., Ortega, C., Ma, O.: Passive gravity compensation mechanisms: technologies and applications. Recent Pat. Eng. 5(1), 32–44 (2011)
Gosselin, C.: Gravity compensation, static balancing and dynamic balancing of parallel mechanisms. In: Smart Devices and Machines for Advanced Manufacturing, pp. 27–48. Springer (2008). https://doi.org/10.1007/978-1-84800-147-3_2
Arakelian, V.H., Briot, S.: Balancing of Linkages and Robot Manipulators - Advanced Methods with Illustrative Examples. No. 27 in Mechanisms and Machine Science, pp. 241–269. Springer (2015). Chap 8. https://doi.org/10.1007/978-3-319-12490-2
Dunning, A.G., Tolou, N., Herder, J.L.: Review article: inventory of platforms towards the design of a statically balanced six degrees of freedom compliant precision stage. Mech. Sci. 2(2), 157–168 (2011). https://doi.org/10.5194/ms-2-157-2011
Rivin, E.I.: Mechanical Design of Robots, pp. 107–119. McGraw-Hill Inc., New York (1987). Chap 3.5
Nikoobin, A., Moradi, M.: Optimal balancing of the robotic manipulators. In: Dynamic Balancing of Mechanisms and Synthesizing of Parallel Robots, pp. 342–363. Springer (2016). https://doi.org/10.1007/978-3-319-17683-3_14
Waldron, K.J., Kinzel, G.L., Agrawal, S.K.: Kinematics, Dynamics, and Design of Machinery, pp. 671–676. Wiley (2016). Chap 16.7-16.8
Herder, J.L.: Energy-free systems - theory, conception, and design of statically balanced spring mechanisms. Ph.D. thesis, Delft University of Technology (2001). https://doi.org/10.13140/RG.2.1.3942.8966
Ciupitu, L.: The weight forces balancing of the industrial robots arms. Ph.D. thesis, “Politehnica” University of Bucharest (1997)
Dresig, H.: Transmission dynamics—rigid body mechanisms. VDI Richtlinien, 2149 (2008)
Sandor, G.N., Erdman, A.G.: Advanced Mechanism Design: Analysis and Synthesis, vol. 2, pp. 435–482. Prentice-Hall, Inc. (1984). Chap 5.11–5.18
Wang, P., Xu, Q.: Design and modeling of constant-force mechanisms: a survey. Mech. Mach. Theory 119, 1–21 (2018). https://doi.org/10.1016/j.mechmachtheory.2017.08.017
Carwardine, G.: Equipoising mechanism. U.S. Patent 2090439 (1937)
LaCoste, L.J.B.: A new type long period vertical seismograph. Physics 5(7), 178–180 (1934). https://doi.org/10.1063/1.1745248
Alling, E.D., Re Qua, J.: Dental bracket. U.S. Patent 218210 (1879)
Lynen, W.: Federwerk. Patent CH24926A (1901)
Hilpert, H.: Weight balancing of precision mechanical instruments. J. Mech. 3(4), 289–302 (1968). https://doi.org/10.1016/0022-2569(68)90005-0
Arakelian, V.H.: The history of the creation and development of hand-operated balanced manipulators (HOBM). In: International Symposium on History of Machines and Mechanisms 2004, pp. 347–356 (2004). https://doi.org/10.1007/1-4020-2204-2_27
Hain, K.: Spring mechanisms - point balancing. In: Spring Design and Application, vol. 276, pp. 271–273. McGraw-Hill, Inc. (1961)
Radaelli, G., Gallego, J.A., Herder, J.L.: An energy approach to static balancing of systems with torsion stiffness. J. Mech. Des. 133(9), 091006 (2011). https://doi.org/10.1115/1.4004704
Hain, K.: Spring mechanisms - force analysis. In: Spring Design and Application, vol. 276, pp. 268–270. McGraw-Hill, Inc. (1961)
Hain, K.: Spring mechanisms - continuous balancing. In: Spring Design and Application, vol. 276, pp. 274–275. McGraw-Hill, Inc. (1961)
Robertson, W.S., Kidner, M.R., Cazzolato, B.S., Zander, A.C.: Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation. J. Sound Vib. 326(1–2), 88–103 (2009). https://doi.org/10.1016/j.jsv.2009.04.015
Carrella, A., Brennan, M.J., Waters, T.P., Shin, K.: On the design of a high-static-low-dynamic stiffness isolator using linear mechanical springs and magnets. J. Sound Vib. 315(3), 712–720 (2008). https://doi.org/10.1016/j.jsv.2008.01.046
Boisclair, J., Richard, P.L., Laliberté, T., Gosselin, C.: Gravity compensation of robotic manipulators using cylindrical Halbach arrays. IEEE/ASME Trans. Mechatron. 22(1), 457–464 (2017). https://doi.org/10.1109/TMECH.2016.2614386
Harmening, W.A.: Static mass balancing with a torsion spring and four-bar linkage. In: Proceedings of the ASME 1974 DETC, 74-DET-29, New York, USA. ASME (1974)
Lessard, S., Bigras, P., Bonev, I.A.: A new medical parallel robot and its static balancing optimization. J. Med. Dev. 1(4), 272–278 (2007). https://doi.org/10.1115/1.2815329
Nathan, R.H.: A constant force generation mechanism. J. Mech. Des. 107(4), 508–512 (1985). https://doi.org/10.1115/1.3260755
Albu-Schäffer, A., Haddadin, S., Ott, C., Stemmer, A., Wimböck, T., Hirzinger, G.: The DLR lightweight robot - design and control concepts for robots in human environments. Ind. Robot. 34(5), 376–385 (2007). https://doi.org/10.1108/01439910710774386
Merckaert, K., Beir, A.D., Adriaens, N., Makrini, I.E., Ham, R.V., Vanderborght, B.: Independent load carrying and measurement manipulator robot arm for improved payload to mass ratio. Robot. Comput. Integr. Manuf. 53, 135–140 (2018). https://doi.org/10.1016/0736-5845(91)90004-C
Leblond, M., Gosselin, C.M.: Static balancing of spatial and planar parallel manipulators with prismatic actuators. In: Proceedings of the ASME 1998 IDETC/CIE, Atlanta, USA, vol. 1A, p. V01AT01A021. ASME (1998). https://doi.org/10.1115/DETC98/MECH-5963
Stewart, D.: A platform with six degrees of freedom. Proc. Inst. Mech. Eng. 180(15), 371–386 (1965). https://doi.org/10.1243/PIME_PROC_1965_180_029_02
Dasgupta, B., Mruthyunjaya, T.: The Stewart platform manipulator: a review. Mech. Mach. Theory 35(1), 15–40 (2000). https://doi.org/10.1016/S0094-114X(99)00006-3
Gopalswamy, A., Gupta, P., Vidyasagar, M.: A new parallelogram linkage configuration for gravity compensation using torsional springs. In: Proceedings of the IEEE 1992 ICRA, Nice, France, vol. 1, pp. 664–665. IEEE (1992). https://doi.org/10.1109/ROBOT.1992.220291
de Jong, J.J., van Dijk, J.W., Herder, J.L.: A screw based methodology for instantaneous dynamic balance. Mech. Mach. Theory 141, 267–282 (2019). https://doi.org/10.1016/j.mechmachtheory.2019.07.014
Soethoudt, B., Herder, J.L.: Synthesis of perfect spring balancers with higher-order zero-free-length springs. In: Proceedings of the ASME 2007 IDETC/CIE, Las Vegas, USA, vol. 8, pp. 751–762. ASME (2007). https://doi.org/10.1115/DETC2007-34954
Chironis, N.P.: Constant-force and variable-rate springs. In: Chironis, N.P. (ed.) Spring Design and Application, pp. 153–176. McGraw-Hill (1961)
Wahl, A.M.: Mechanical Springs, pp. 152–154. McGraw-Hill (1963). Chap 12
Ulrich, N., Kumar, V.: Passive mechanical gravity compensation for robot manipulators. In: Proceedings of the IEEE 1991 ICRA, Sacramento, USA, vol. 1, pp. 1536–1537. IEEE (1991) https://doi.org/10.1109/ROBOT.1991.131834
Simionescu, I., Ciupitu, L.: The static balancing of the industrial robot arms part II: continuous balancing. Mech. Mach. Theory 35(9), 1299–1311 (2000). https://doi.org/10.1016/S0094-114X(99)00068-3
Endo, G., Yamada, H., Yajima, A., Ogata, M., Hirose, S.: A passive weight compensation mechanism with a non-circular pulley and a spring. In: Proceedings of the IEEE 2010 ICRA, Anchorage, USA, pp. 3843–3848. IEEE (2010). https://doi.org/10.1109/ROBOT.2010.5509797
Kim, J., Moon, J., Kim, J., Lee, G.: Compact variable gravity compensation mechanism with a geometrically optimized lever for maximizing variable ratio. IEEE/ASME Trans. Mechatron. 25(4), 2019–2026 (2020). https://doi.org/10.1109/TMECH.2020.2998291
Laporte, J.L.: Counterweight system. U.S. Patent 4351245 (1982)
Rahman, T., Nathan, R., Seliktar, R., Harwin, W.S.: A simple technique to passively gravity-balance articulated mechanisms. J. Mech. Des. 117(4), 655–657 (1995). https://doi.org/10.1115/1.2826738
Gosselin, C.M.: Adaptive robotic mechanical systems: a design paradigm. J. Mech. Robot. 128(1), 192–198 (2006). https://doi.org/10.1115/1.2120781
van der Wijk, V., Herder, J.L., Demeulenaere, B.: Comparison of various dynamic balancing principles regarding additional mass and additional inertia. J. Mech. Robot. 1(4), 041006 (2009). https://doi.org/10.1115/1.3211022
Carricato, M., Gosselin, C.: A statically balanced Gough/Stewart-type platform: conception, design, and simulation. J. Mech. Robot. 1(3), 031005 (2009). https://doi.org/10.1115/1.3147192
Lowen, G.G., Berkof, R.S.: Survey of investigations into the balancing of linkages. J. Mech. 3(4), 221–231 (1968). https://doi.org/10.1016/0022-2569(68)90001-3
Lowen, G.G., Berkof, R.S., Tepper, F.R.: Balancing of linkages - an update. Mech. Mach. Theory 18(3), 213–220 (1983). https://doi.org/10.1016/0094-114X(83)90092-7
Berkof, R.S.: Complete force and moment balancing of inline four-bar linkages. Mech. Mach. Theory 8(3), 397–410 (1973). https://doi.org/10.1016/0094-114X(73)90076-1
Berkof, R.S., Lowen, G.G., Tepper, F.R.: Balancing of linkages. Shock Vibr. Dig. 9(6), 3–10 (1977). https://doi.org/10.1177/058310247700900603
Ye, Z., Smith, M.R.: Complete balancing of planar linkages by an equivalence method. Mech. Mach. Theory 29(5), 701–712 (1994). https://doi.org/10.1016/0094-114X(94)90112-0
Arakelian, V.H., Smith, M.R.: Shaking force and shaking moment balancing of mechanisms: a historical review with new examples. J. Mech. Des. 127(2), 334–339 (2005). https://doi.org/10.1115/1.1829067
Arakelian, V.H., Smith, M.R.: Erratum: shaking force and shaking moment balancing of mechanisms: a historical review with new examples. J. Mech. Des. 127(5), 1034–1035 (2005). https://doi.org/10.1115/1.1955537
Ricard, R., Gosselin, C.M.: On the development of reactionless parallel manipulators. In: Proceedings of the ASME 2000 IDETC/CIE, Baltimore, USA, vol. 7A, pp. 493–502. ASME (2000). https://doi.org/10.1115/DETC2000/MECH-14098
Gosselin, C.M., Vollmer, F., Côté, G., Wu, Y.: Synthesis and design of reactionless three-degree-of-freedom parallel mechanisms. IEEE Trans. Robot. Autom. 20(2), 191–199 (2004). https://doi.org/10.1109/TRA.2004.824696
Wu, Y., Gosselin, C.M.: Synthesis of reactionless spatial 3-DoF and 6-DoF mechanisms without separate counter-rotations. Int. J. Robot. Res. 23(6), 625–642 (2004). https://doi.org/10.1177/0278364904044400
de Jong, J.J., Müller, A., Herder, J.L.: Higher-order derivatives of rigid body dynamics with application to the dynamic balance of spatial linkages. Mech. Mach. Theory 155, 104059 (2020). https://doi.org/10.1016/j.mechmachtheory.2020.104059
Bagci, C.: Shaking force balancing of planar linkages with force transmission irregularities using balancing idler loops. Mech. Mach. Theory 14(4), 267–284 (1979). https://doi.org/10.1016/0094-114X(79)90013-2
Tepper, F.R., Lowen, G.G.: General theorems concerning full force balancing of planar linkages by internal mass redistribution. J. Eng. Ind. 94(3), 789–796 (1972). https://doi.org/10.1115/1.3428252
Streit, D.A.: Spatial manipulator and six degree of freedom platform - spring equilibrator theory. In: Proceedings of the 2nd National Conference on Applied Mechanisms and Robotics, Cincinnati, USA, p. VIIIB.1 (1991)
Arakelian, V.H., Dahan, M., Smith, M.: A historical review of the evolution of the theory on balancing of mechanisms. In: Ceccarelli, M. (ed.) International Symposium on History of Machines and Mechanisms 2000, Cassino, pp. 291–300. Springer (2000). https://doi.org/10.1007/978-94-015-9554-4_33
de Jong, J.J., Wu, Y., Carricato, M., Herder, J.L.: A pure-inertia method for dynamic balancing of symmetric planar mechanisms. In: Lenarcic, J., Parenti-Castelli, V. (eds.) International Symposium on Advances in Robot Kinematics, Bologna, Italy, vol. 8, pp. 277–284. Springer (2018). https://doi.org/10.1007/978-3-319-93188-3_32
Asada, H., Youcef-Toumi, K.: Analysis and design of a direct-drive arm with a five-bar-link parallel drive mechanism. J. Dyn. Sys. Meas. Control 106(3), 225–230 (1984). https://doi.org/10.1115/1.3149676
Simionescu, I., Ciupitu, L.: The static balancing of the industrial robot arms part I: discrete balancing. Mech. Mach. Theory 35(9), 1287–1298 (2000). https://doi.org/10.1016/S0094-114X(99)00067-1
Bruzzone, L., Bozzini, G.: A statically balanced SCARA-like industrial manipulator with high energetic efficiency. Meccanica 46(4), 771–784 (2011). https://doi.org/10.1007/s11012-010-9336-6
Kazerooni, H.: Statically balanced direct drive manipulator. Robotica 7(2), 143–149 (1989). https://doi.org/10.1017/S0263574700005452
Jean, M., Gosselin, C.M.: Static balancing of planar parallel manipulators. In: Proceedings of the IEEE 1996 ICRA, Minneapolis, USA, vol. 4, pp. 3732–3737. IEEE (1996). https://doi.org/10.1109/ROBOT.1996.509282
Gosselin, C.M., Wang, J.: Static balancing of spatial six-degree-of-freedom parallel mechanisms with revolute actuators. J. Robot. Syst. 17(3), 159–170 (2000). https://doi.org/10.1002/(SICI)1097-4563(200003)17:3<159::AID-ROB3>3.0.CO;2-J
Takahashi, T., Zehnder, J., Okuno, H.G., Sugano, S., Coros, S., Thomaszewski, B.: Computational design of statically balanced planar spring mechanisms. IEEE Robot. Autom. Lett. 4(4), 4438–4444 (2019). https://doi.org/10.1109/LRA.2019.2929984
Ebert-Uphoff, I., Gosselin, C.M., Laliberté, T.: Static balancing of spatial parallel platform mechanisms-revisited. J. Mech. Des. 122(1), 43–51 (2000). https://doi.org/10.1115/1.533544
Martini, A., Troncossi, M., Carricato, M., Rivola, A.: Elastodynamic behavior of balanced closed-loop mechanisms: numerical analysis of a four-bar linkage. Meccanica 49(3), 601–614 (2014). https://doi.org/10.1007/s11012-013-9815-7
Martini, A., Troncossi, M., Carricato, M., Rivola, A.: Modal and kineto-elastodynamic analyses of balanced four-bar linkages. In: Arczewski, K., Frączek, M.W.J. (eds.) Proceedings of the Multibody Dynamics 2009. ECCOMAS Thematic Conferences. ECCOMAS, Warsaw, Poland, pp. 1–20 (2009)
Minotti, P., Pracht, P.: Ressorts et mécanismes: Une solution aux problèmes d’équilibrage. Mech. Mach. Theory 23(1–2), 157–168 (1988). https://doi.org/10.1016/0094-114X(88)90093-6
Streit, D.A., Gilmore, B.J.: ‘Perfect’ spring equilibrators for rotatable bodies. J. Mech. Trans. 111(4), 451–458 (1989). https://doi.org/10.1115/1.3259020
Wongratanaphisan, T., Chew, M.: Gravity compensation of spatial two-DOF serial manipulators. J. Robot. Syst. 19(7), 329–347 (2002). https://doi.org/10.1002/rob.10044
Hain, K.: Der Federausgleich von Lasten. Grundlagen der Landtechnik - Konstrukteurhefte (3), 38–50 (1952)
Hain, K.: Gelenkarme Bandgetriebe für den Kraftausgleich durch Federn. Grundlagen der Landtechnik - Konstrukteurhefte (4), 100–109 (1953)
Herder, J.L.: Design of spring force compensation systems. Mech. Mach. Theory 33(1–2), 151–161 (1998). https://doi.org/10.1016/S0094-114X(97)00027-X
Deepak, S.R., Ananthasuresh, G.K.: Perfect static balance of linkages by addition of springs but not auxiliary bodies. J. Mech. Robot. 4(2), 021014 (2012). https://doi.org/10.1115/1.4006521
Kuo, Y.L., Lan, C.C.: A two-dimensional adjustable constant-force mechanism. J. Mech. Des. 142(6), 063304 (2020). https://doi.org/10.1115/1.4044917
Streit, D.A., Chung, H., Gilmore, B.J.: Perfect equilibrators for rigid body spatial rotations about a Hooke’s joint. J. Mech. Des. 113(4), 500–507 (1991). https://doi.org/10.1115/1.2912811
Walsh, G.J., Streit, D.A., Gilmore, B.J.: Spatial spring equilibrator theory. Mech. Mach. Theory 26(2), 155–170 (1991). https://doi.org/10.1016/0094-114X(91)90080-N
Sweere, H.C., Fluhrer, R.W., Al-Zebdeh, K., Eliason, J., Lindblad, S.C., Showalter, M.J., Theis, J.W., Benson, C.D.: Monitor support system. U.S. Patent 6994306 (2006)
Jackson, E.V., Matthew, M.P.: Instrument table. U.S. Patent 3179364 (1965)
Nathan, R.H.: Constant force generator mechanism and adjustable seat constructed therewith. U.S. Patent 4387876 (1983)
Rivin, E.: Stiffness and Damping in Mechanical Design, pp. 369–375. Marcel Dekker, New York (1999). Chap 8.4
Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301(3–5), 678–689 (2006). https://doi.org/10.1016/j.jsv.2006.10.011
Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3–5), 371–452 (2008). https://doi.org/10.1016/j.jsv.2008.01.014
Park, S.T., Luu, T.T.: Techniques for optimizing parameters of negative stiffness. J. Mech. Eng. Sci. 221(5), 505–510 (2007). https://doi.org/10.1243/0954406JMES390
Schenk, M., Guest, S.D.: On zero stiffness. J. Mech. Eng. Sci. 228(10), 1701–1714 (2014). https://doi.org/10.1177/0954406213511903
Tarnai, T.: Zero stiffness elastic structures. Int. J. Mech. Sci. 45(3), 425–431 (2003). https://doi.org/10.1016/S0020-7403(03)00063-8
Gallego, J.A., Herder, J.L.: Buckling as a new perspective on static balancing of mechanisms. In: Chicurel-Uziel, R., Rico, J. (eds.) Proceedings of the 13th World Congress in Mechanism and Machine Science, IFToMM, Guanajuato, México, pp. 1–7 (2011)
Numić, A., Blad, T.W.A., van Keulen, F.: Stiffness compensation through matching buckling loads in a compliant four-bar mechanism. J. Mech. Robot. 14(2), 021007 (2021). https://doi.org/10.1115/1.4052333
Seffen, K.A., Pellegrino, S.: Deployment dynamics of tape springs. Proc. Roy. Soc. Lond. A 455(1983), 1003–1048 (1999). https://doi.org/10.1098/rspa.1999.0347
Mao, H., Ganga, P.L., Ghiozzi, M., Ivchenko, N., Tibert, G.: Deployment of bistable self-deployable tape spring booms using a gravity offloading system. J. Aerosp. Eng. 30(4), 04017007 (2017). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000709
Wilkes, D.F.: Roller-band devices. U.S. Patent 3452175 (1969)
te Riele, F.L.S., Herder, J.L.: Perfect static balance with normal springs. In: Proceedings of the ASME 2001 IDETC/CIE, Pittsburgh, USA, vol. 2A, pp. 571–578. ASME (2001). https://doi.org/10.1115/DETC2001/DAC-21069
Barents, R., Schenk, M., van Dorsser, W.D., Wisse, B.M.: Spring-to-spring balancing as energy-free adjustment method in gravity equilibrators. J. Mech. Des. 133(6), 061010 (2011). https://doi.org/10.1115/1.4004101
Nguyen, V.L., Lin, C.Y., Kuo, C.H.: Gravity compensation design of Delta parallel robots using gear-spring modules. Mech. Mach. Theory 154, 104046 (2020). https://doi.org/10.1016/j.mechmachtheory.2020.104046
French, M.J., Widden, M.B.: The spring-and-lever balancing mechanism, George Carwardine and the Anglepoise lamp. J. Mech. Eng. Sci. 214(3), 501–508 (2000). https://doi.org/10.1243/0954406001523137
Gosselin, C.M.: Static balancing of spherical 3-DOF parallel mechanisms and manipulators. Int. J. Robot. Res. 18(8), 819–829 (1999). https://doi.org/10.1177/02783649922066583
Kim, H.S., Song, J.B.: Multi-DOF counterbalance mechanism for a service robot arm. IEEE/ASME Trans. Mechatron. 19(6), 1756–1763 (2014). https://doi.org/10.1109/TMECH.2014.2308312
Yang, Z.W., Lan, C.C.: An adjustable gravity-balancing mechanism using planar extension and compression springs. Mech. Mach. Theory 92, 314–329 (2015). https://doi.org/10.1016/j.mechmachtheory.2015.05.006
Soper, R.R., Mook, D.T., Reinholtz, C.F.: Vibration of nearly perfect spring equilibrators. In: Proceedings of the ASME 1997 IDETC/CIE, Sacramento, USA, vol. 2, p. V002T29A026. ASME (1997). https://doi.org/10.1115/DETC97/DAC-3768
Zobairi, M.A.K., Rao, S.S., Sahay, B.: Kineto-elastodynamic balancing of 4R-four-bar mechanisms by internal mass redistribution. Mech. Mach. Theory 21(4), 317–323 (1986). https://doi.org/10.1016/0094-114X(86)90053-4
Martini, A., Troncossi, M., Rivola, A.: Elastodynamic effects of mass-balancing: experimental investigation of a four-bar linkage. Adv. Mech. Eng. 5, 949457 (2013). https://doi.org/10.1155/2013/949457
Martini, A., Troncossi, M., Rivola, A.: Algorithm for the static balancing of serial and parallel mechanisms combining counterweights and springs: generation, assessment and ranking of effective design variants. Mech. Mach. Theory 137, 336–354 (2019). https://doi.org/10.1016/j.mechmachtheory.2019.03.031
Agrawal, S.K., Fattah, A.: Gravity-balancing of spatial robotic manipulators. Mech. Mach. Theory 39(12), 1331–1344 (2004). https://doi.org/10.1016/j.mechmachtheory.2004.05.019
Laliberté, T., Gosselin, C.M., Jean, M.: Static balancing of 3-DOF planar parallel mechanisms. IEEE Trans. Mechatron. 4(4), 363–377 (1999). https://doi.org/10.1109/3516.809515
Streit, D.A., Shin, E.: Equilibrators for planar linkages. J. Mech. Des. 115(3), 604–611 (1993). https://doi.org/10.1115/1.2919233
Okada, T.: Optimization of mechanisms for force generation by using pulleys and spring. Int. J. Robot. Res. 5(1), 77–89 (1986). https://doi.org/10.1177/027836498600500105
Wang, J., Gosselin, C.M.: Static balancing of spatial three-degree-of-freedom parallel mechanisms. Mech. Mach. Theory 34(3), 437–452 (1999). https://doi.org/10.1016/S0094-114X(98)00031-7
Russo, A., Sinatra, R., Xi, F.: Static balancing of parallel robots. Mech. Mach. Theory 40(2), 191–202 (2005). https://doi.org/10.1016/j.mechmachtheory.2004.06.011
Martini, A., Troncossi, M., Carricato, M., Rivola, A.: Static balancing of a parallel kinematics machine with Linear-Delta architecture: theory, design and numerical investigation. Mech. Mach. Theory 90, 128–141 (2015). https://doi.org/10.1016/j.mechmachtheory.2015.03.003
Martini, A.: Gravity compensation of a 6-UPS parallel kinematics machine tool through elastically balanced constant-force generators. FME Trans. 46(1), 10–16 (2018). https://doi.org/10.5937/fmet1801010M
Carrabotta, R., Martini, A., Troncossi, M., Rivola, A.: Optimal static balancing of a spatial palletizing robot. In: Font-Llagunes, J.M. (ed.) Proceedings of the Multibody Dynamics 2015, ECCOMAS Thematic Conference, ECCOMAS, Barcelona, Spain, pp. 817–827 (2015)
Agrawal, S.K., Gardner, G., Pledgie, S.: Design and fabrication of an active gravity balanced planar mechanism using auxiliary parallelograms. J. Mech. Des. 123(4), 525–528 (2001). https://doi.org/10.1115/1.1413771
Brown, G.W.: Equipment for use with hand held motion picture camera. U.S. Patent 4017168 (1977)
Kang, L., Oh, S.M., Kim, W., Yi, B.J.: Design of a new gravity balanced parallel mechanism with Schönflies motion. J. Mech. Eng. Sci. 230(17), 3111–3134 (2016). https://doi.org/10.1177/0954406215605862
Shin, E., Streit, D.A.: Spring equilibrator theory for static balancing of planar pantograph linkages. Mech. Mach. Theory 26(7), 645–657 (1991). https://doi.org/10.1016/0094-114X(91)90027-2
Berkof, R.S., Lowen, G.G.: A new method for completely force balancing simple linkages. J. Eng. Ind. 91(1), 21–26 (1969). https://doi.org/10.1115/1.3591524
Lacasse, M.A., Lachance, G., Boisclair, J., Ouellet, J., Gosselin, C.M.: On the design of a statically balanced serial robot using remote counterweights. In: Proceedings of the IEEE 2013 ICRA, Karlsruhe, Germany, pp. 4189–4194. IEEE (2013). https://doi.org/10.1109/ICRA.2013.6631169
Kolovsky, M., Evgrafov, A.N., Semenov, Y.A., Slousch, A.V.: Advanced Theory of Mechanisms and Machines. Foundations of Engineering Mechanics, pp 237–239. Springer (2000). Chap 7.2. https://doi.org/10.1007/978-3-540-46516-4
van Dorsser, W.D., Barents, R., Wisse, B.M., Herder, J.L.: Gravity-balanced arm support with energy-free adjustment. J. Med. Dev. 1(2), 151–158 (2007). https://doi.org/10.1115/1.2736400
Franchetti, D., Boschetti, G., Lenzo, B.: Passive gravity balancing with a self-regulating mechanism for variable payload. Machines 9(8), 145 (2021). https://doi.org/10.3390/machines9080145
Arsenault, M., Gosselin, C.M.: Kinematic, static, and dynamic analysis of a planar one-degree-of-freedom tensegrity mechanism. J. Mech. Des. 127(6), 1152–1160 (2005). https://doi.org/10.1115/1.1913705
Schenk, M., Guest, S.D., Herder, J.L.: Zero stiffness tensegrity structures. Int. J. Solids Struct. 44(20), 6569–6583 (2006). https://doi.org/10.1016/j.ijsolstr.2007.02.041
Arsenault, M., Gosselin, C.M.: Static balancing of tensegrity mechanisms. J. Mech. Des. 129(3), 295–300 (2007). https://doi.org/10.1115/1.2406100
Shekarforoush, S.M.M., Eghtesad, M., Farid, M.: Kinematic and static analyses of statically balanced spatial tensegrity mechanism with active compliant components. J. Intell. Robot. Syst. 71(3), 287–302 (2013). https://doi.org/10.1007/s10846-012-9784-4
Gallego, J.A., Herder, J.L.: Criteria for the static balancing of compliant mechanisms. In: Proceedings of the ASME 2010 IDETC/CIE, Montreal, Canada, vol. 2, pp. 465–473. ASME (2010). https://doi.org/10.1115/DETC2010-28469
Chen, G., Zhang, S.: Fully-compliant statically-balanced mechanisms without prestressing assembly: concepts and case studies. Mech. Sci. 2(2), 169–174 (2011). https://doi.org/10.5194/ms-2-169-2011
Radaelli, G., Herder, J.L.: Isogeometric shape optimization for compliant mechanisms with prescribed load paths. In: Proceedings of the ASME 2014 IDETC/CIE, Buffalo, USA, vol. 5A, p. V05AT08A046. ASME (2014). https://doi.org/10.1115/DETC2014-35373
Radaelli, G., Herder, J.L.: A monolithic compliant large-range gravity balancer. Mech. Mach. Theory 102, 55–67 (2016). https://doi.org/10.1016/j.mechmachtheory.2016.03.015
Radaelli, G., Herder, J.L.: Gravity balanced compliant shell mechanisms. Int. J. Solids Struct. 118–119, 78–88 (2017). https://doi.org/10.1016/j.ijsolstr.2017.04.021
Hou, C.W., Lan, C.C.: Functional joint mechanisms with constant-torque outputs. Mech. Mach. Theory 62, 166–181 (2013). https://doi.org/10.1016/j.mechmachtheory.2012.12.002
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Mottola, G., Cocconcelli, M., Rubini, R., Carricato, M. (2022). Gravity Balancing of Parallel Robots by Constant-Force Generators. In: Arakelian, V. (eds) Gravity Compensation in Robotics. Mechanisms and Machine Science, vol 115. Springer, Cham. https://doi.org/10.1007/978-3-030-95750-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-95750-6_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-95749-0
Online ISBN: 978-3-030-95750-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)