Skip to main content

Gravity Balancing of Parallel Robots by Constant-Force Generators

  • Chapter
  • First Online:
Gravity Compensation in Robotics

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 115))

  • 542 Accesses

Abstract

This Chapter reviews the literature on gravity balancing for parallel robots by using so-called constant-force generators. Parallel robots are formed by several kinematic chains connecting, in parallel, a fixed base to a moving end-effector. A constant-force generator is a mechanism that is able to exert, at a given point, a force having constant magnitude and direction. Gravity balancing of serial robots is a well established technique; conversely, application in parallel robotics is controversial. Indeed, the addition of gravity-balancing mechanisms to a parallel robot may worsen its dynamic behavior, as shown in some referenced works. In this Chapter, we introduce a taxonomy of constant-force generators proposed so far in the literature, including mass and spring balancing methods, toghether with more niche concepts. We also summarize design considerations of practical concern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For conciseness, we only consider the most general case of mechanisms having three-dimensional motion; the case of planar motion can be derived as a sub-case, where each frame is defined by only two coordinate axes instead of three.

  2. 2.

    Here, we implicitly assume the springs to be linear. Indeed, some works [25, 31, 32] employ torsional (angular) springs. In this case, the derivation of the potential energy is similar, replacing the stretched and rest lengths by corresponding angles \(\phi _j\) and \(\phi _{j,0}\); the spring stiffness \(k_j\) is then defined in angular units.

  3. 3.

    Notice that the gravity force acting on the EE may vary after the payload is changed; some designs that allow the mechanism to adapt to changes of the EE total weight while keeping the global gravitational balance of the mechanism are reported in Subsect. 5.2.

  4. 4.

    Notice that some authors [50] define instead the shaking force as the total force applied by the fixed ground to the mechanism; a similar notation applies then to the shaking moment.

  5. 5.

    Here and in the following, R denotes a rotary joint, P a prismatic joint, U a universal joint and S a spherical joint; a line above each symbol (such as \(\overline{\mathrm {P}}\)) denotes that a joint is actuated.

  6. 6.

    In this Chapter, we always implicitly assume \(g\ne 0\); indeed, for mass-balanced systems it can be readily seen that the formulas hold for any value of g. Therefore, a mechanism mass-balanced on Earth (\(g=9.80665\,\text {ms}^{-2}\)) retains its properties even in different gravity environments, such as in space or on the surface of other planets; this can be useful for designs targeted for space exploration.

  7. 7.

    Without loss of generality, we assume all angles \(\phi \), \(\psi \), \(\alpha \), \(\beta \) and \(\theta \) to be in the range .

  8. 8.

    Only two springs are employed, for simplicity, but more springs could be introduced; this provides greater freedom in design, but does not significantly change the results shown here. For instance, a spring between links 2 and 0 could be introduced; since link 2 and 1 move at the same angular speed, however, it can be shown that its effect is equivalent to that of a spring between links 1 and 0.

References

  1. Merlet, J.P.: Parallel Robots. Solid Mechanics and Its Applications, vol. 128, pp. 274–275. Springer (2006). Chap. 8.6. https://doi.org/10.1007/1-4020-4133-0

  2. Arakelian, V.H.: Gravity compensation in robotics. Adv. Robot. 30(2), 79–96 (2016). https://doi.org/10.1080/01691864.2015.1090334

    Article  Google Scholar 

  3. Baradat, C., Arakelian, V.H., Briot, S., Guegan, S.: Design and prototyping of a new balancing mechanism for spatial parallel manipulators. J. Mech. Des. 130(7), 072305 (2008). https://doi.org/10.1115/1.2901057

    Article  Google Scholar 

  4. Chheta, Y.R., Joshi, R.M., Gotewal, K.K., Manoah, S.M.: A review on passive gravity compensation. In: Proceedings of the IEEE 2017 ICECA, Coimbatore, India, vol. 1, pp 184–189. IEEE (2017). https://doi.org/10.1109/ICECA.2017.8203668

  5. Steinthorsson, A.T., Aguirre, M.E., Dunning, G., Herder, J.L.: Review, categorization and comparison of 1 DOF static balancers. In: Proceedings of the ASME 2015 IDETC/CIE, Boston, USA, vol. 5A, p. V05AT08A018. ASME (2015). https://doi.org/10.1115/DETC2015-47217

  6. Lu, Q., Ortega, C., Ma, O.: Passive gravity compensation mechanisms: technologies and applications. Recent Pat. Eng. 5(1), 32–44 (2011)

    Article  Google Scholar 

  7. Gosselin, C.: Gravity compensation, static balancing and dynamic balancing of parallel mechanisms. In: Smart Devices and Machines for Advanced Manufacturing, pp. 27–48. Springer (2008). https://doi.org/10.1007/978-1-84800-147-3_2

  8. Arakelian, V.H., Briot, S.: Balancing of Linkages and Robot Manipulators - Advanced Methods with Illustrative Examples. No. 27 in Mechanisms and Machine Science, pp. 241–269. Springer (2015). Chap 8. https://doi.org/10.1007/978-3-319-12490-2

  9. Dunning, A.G., Tolou, N., Herder, J.L.: Review article: inventory of platforms towards the design of a statically balanced six degrees of freedom compliant precision stage. Mech. Sci. 2(2), 157–168 (2011). https://doi.org/10.5194/ms-2-157-2011

    Article  Google Scholar 

  10. Rivin, E.I.: Mechanical Design of Robots, pp. 107–119. McGraw-Hill Inc., New York (1987). Chap 3.5

    Google Scholar 

  11. Nikoobin, A., Moradi, M.: Optimal balancing of the robotic manipulators. In: Dynamic Balancing of Mechanisms and Synthesizing of Parallel Robots, pp. 342–363. Springer (2016). https://doi.org/10.1007/978-3-319-17683-3_14

  12. Waldron, K.J., Kinzel, G.L., Agrawal, S.K.: Kinematics, Dynamics, and Design of Machinery, pp. 671–676. Wiley (2016). Chap 16.7-16.8

    Google Scholar 

  13. Herder, J.L.: Energy-free systems - theory, conception, and design of statically balanced spring mechanisms. Ph.D. thesis, Delft University of Technology (2001). https://doi.org/10.13140/RG.2.1.3942.8966

  14. Ciupitu, L.: The weight forces balancing of the industrial robots arms. Ph.D. thesis, “Politehnica” University of Bucharest (1997)

    Google Scholar 

  15. Dresig, H.: Transmission dynamics—rigid body mechanisms. VDI Richtlinien, 2149 (2008)

    Google Scholar 

  16. Sandor, G.N., Erdman, A.G.: Advanced Mechanism Design: Analysis and Synthesis, vol. 2, pp. 435–482. Prentice-Hall, Inc. (1984). Chap 5.11–5.18

    Google Scholar 

  17. Wang, P., Xu, Q.: Design and modeling of constant-force mechanisms: a survey. Mech. Mach. Theory 119, 1–21 (2018). https://doi.org/10.1016/j.mechmachtheory.2017.08.017

    Article  Google Scholar 

  18. Carwardine, G.: Equipoising mechanism. U.S. Patent 2090439 (1937)

    Google Scholar 

  19. LaCoste, L.J.B.: A new type long period vertical seismograph. Physics 5(7), 178–180 (1934). https://doi.org/10.1063/1.1745248

    Article  Google Scholar 

  20. Alling, E.D., Re Qua, J.: Dental bracket. U.S. Patent 218210 (1879)

    Google Scholar 

  21. Lynen, W.: Federwerk. Patent CH24926A (1901)

    Google Scholar 

  22. Hilpert, H.: Weight balancing of precision mechanical instruments. J. Mech. 3(4), 289–302 (1968). https://doi.org/10.1016/0022-2569(68)90005-0

    Article  Google Scholar 

  23. Arakelian, V.H.: The history of the creation and development of hand-operated balanced manipulators (HOBM). In: International Symposium on History of Machines and Mechanisms 2004, pp. 347–356 (2004). https://doi.org/10.1007/1-4020-2204-2_27

  24. Hain, K.: Spring mechanisms - point balancing. In: Spring Design and Application, vol. 276, pp. 271–273. McGraw-Hill, Inc. (1961)

    Google Scholar 

  25. Radaelli, G., Gallego, J.A., Herder, J.L.: An energy approach to static balancing of systems with torsion stiffness. J. Mech. Des. 133(9), 091006 (2011). https://doi.org/10.1115/1.4004704

    Article  Google Scholar 

  26. Hain, K.: Spring mechanisms - force analysis. In: Spring Design and Application, vol. 276, pp. 268–270. McGraw-Hill, Inc. (1961)

    Google Scholar 

  27. Hain, K.: Spring mechanisms - continuous balancing. In: Spring Design and Application, vol. 276, pp. 274–275. McGraw-Hill, Inc. (1961)

    Google Scholar 

  28. Robertson, W.S., Kidner, M.R., Cazzolato, B.S., Zander, A.C.: Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation. J. Sound Vib. 326(1–2), 88–103 (2009). https://doi.org/10.1016/j.jsv.2009.04.015

    Article  Google Scholar 

  29. Carrella, A., Brennan, M.J., Waters, T.P., Shin, K.: On the design of a high-static-low-dynamic stiffness isolator using linear mechanical springs and magnets. J. Sound Vib. 315(3), 712–720 (2008). https://doi.org/10.1016/j.jsv.2008.01.046

    Article  Google Scholar 

  30. Boisclair, J., Richard, P.L., Laliberté, T., Gosselin, C.: Gravity compensation of robotic manipulators using cylindrical Halbach arrays. IEEE/ASME Trans. Mechatron. 22(1), 457–464 (2017). https://doi.org/10.1109/TMECH.2016.2614386

    Article  Google Scholar 

  31. Harmening, W.A.: Static mass balancing with a torsion spring and four-bar linkage. In: Proceedings of the ASME 1974 DETC, 74-DET-29, New York, USA. ASME (1974)

    Google Scholar 

  32. Lessard, S., Bigras, P., Bonev, I.A.: A new medical parallel robot and its static balancing optimization. J. Med. Dev. 1(4), 272–278 (2007). https://doi.org/10.1115/1.2815329

    Article  Google Scholar 

  33. Nathan, R.H.: A constant force generation mechanism. J. Mech. Des. 107(4), 508–512 (1985). https://doi.org/10.1115/1.3260755

    Article  Google Scholar 

  34. Albu-Schäffer, A., Haddadin, S., Ott, C., Stemmer, A., Wimböck, T., Hirzinger, G.: The DLR lightweight robot - design and control concepts for robots in human environments. Ind. Robot. 34(5), 376–385 (2007). https://doi.org/10.1108/01439910710774386

    Article  Google Scholar 

  35. Merckaert, K., Beir, A.D., Adriaens, N., Makrini, I.E., Ham, R.V., Vanderborght, B.: Independent load carrying and measurement manipulator robot arm for improved payload to mass ratio. Robot. Comput. Integr. Manuf. 53, 135–140 (2018). https://doi.org/10.1016/0736-5845(91)90004-C

    Article  Google Scholar 

  36. Leblond, M., Gosselin, C.M.: Static balancing of spatial and planar parallel manipulators with prismatic actuators. In: Proceedings of the ASME 1998 IDETC/CIE, Atlanta, USA, vol. 1A, p. V01AT01A021. ASME (1998). https://doi.org/10.1115/DETC98/MECH-5963

  37. Stewart, D.: A platform with six degrees of freedom. Proc. Inst. Mech. Eng. 180(15), 371–386 (1965). https://doi.org/10.1243/PIME_PROC_1965_180_029_02

    Article  Google Scholar 

  38. Dasgupta, B., Mruthyunjaya, T.: The Stewart platform manipulator: a review. Mech. Mach. Theory 35(1), 15–40 (2000). https://doi.org/10.1016/S0094-114X(99)00006-3

    Article  MathSciNet  MATH  Google Scholar 

  39. Gopalswamy, A., Gupta, P., Vidyasagar, M.: A new parallelogram linkage configuration for gravity compensation using torsional springs. In: Proceedings of the IEEE 1992 ICRA, Nice, France, vol. 1, pp. 664–665. IEEE (1992). https://doi.org/10.1109/ROBOT.1992.220291

  40. de Jong, J.J., van Dijk, J.W., Herder, J.L.: A screw based methodology for instantaneous dynamic balance. Mech. Mach. Theory 141, 267–282 (2019). https://doi.org/10.1016/j.mechmachtheory.2019.07.014

    Article  Google Scholar 

  41. Soethoudt, B., Herder, J.L.: Synthesis of perfect spring balancers with higher-order zero-free-length springs. In: Proceedings of the ASME 2007 IDETC/CIE, Las Vegas, USA, vol. 8, pp. 751–762. ASME (2007). https://doi.org/10.1115/DETC2007-34954

  42. Chironis, N.P.: Constant-force and variable-rate springs. In: Chironis, N.P. (ed.) Spring Design and Application, pp. 153–176. McGraw-Hill (1961)

    Google Scholar 

  43. Wahl, A.M.: Mechanical Springs, pp. 152–154. McGraw-Hill (1963). Chap 12

    Google Scholar 

  44. Ulrich, N., Kumar, V.: Passive mechanical gravity compensation for robot manipulators. In: Proceedings of the IEEE 1991 ICRA, Sacramento, USA, vol. 1, pp. 1536–1537. IEEE (1991) https://doi.org/10.1109/ROBOT.1991.131834

  45. Simionescu, I., Ciupitu, L.: The static balancing of the industrial robot arms part II: continuous balancing. Mech. Mach. Theory 35(9), 1299–1311 (2000). https://doi.org/10.1016/S0094-114X(99)00068-3

    Article  Google Scholar 

  46. Endo, G., Yamada, H., Yajima, A., Ogata, M., Hirose, S.: A passive weight compensation mechanism with a non-circular pulley and a spring. In: Proceedings of the IEEE 2010 ICRA, Anchorage, USA, pp. 3843–3848. IEEE (2010). https://doi.org/10.1109/ROBOT.2010.5509797

  47. Kim, J., Moon, J., Kim, J., Lee, G.: Compact variable gravity compensation mechanism with a geometrically optimized lever for maximizing variable ratio. IEEE/ASME Trans. Mechatron. 25(4), 2019–2026 (2020). https://doi.org/10.1109/TMECH.2020.2998291

    Article  Google Scholar 

  48. Laporte, J.L.: Counterweight system. U.S. Patent 4351245 (1982)

    Google Scholar 

  49. Rahman, T., Nathan, R., Seliktar, R., Harwin, W.S.: A simple technique to passively gravity-balance articulated mechanisms. J. Mech. Des. 117(4), 655–657 (1995). https://doi.org/10.1115/1.2826738

    Article  Google Scholar 

  50. Gosselin, C.M.: Adaptive robotic mechanical systems: a design paradigm. J. Mech. Robot. 128(1), 192–198 (2006). https://doi.org/10.1115/1.2120781

    Article  Google Scholar 

  51. van der Wijk, V., Herder, J.L., Demeulenaere, B.: Comparison of various dynamic balancing principles regarding additional mass and additional inertia. J. Mech. Robot. 1(4), 041006 (2009). https://doi.org/10.1115/1.3211022

    Article  Google Scholar 

  52. Carricato, M., Gosselin, C.: A statically balanced Gough/Stewart-type platform: conception, design, and simulation. J. Mech. Robot. 1(3), 031005 (2009). https://doi.org/10.1115/1.3147192

    Article  Google Scholar 

  53. Lowen, G.G., Berkof, R.S.: Survey of investigations into the balancing of linkages. J. Mech. 3(4), 221–231 (1968). https://doi.org/10.1016/0022-2569(68)90001-3

    Article  Google Scholar 

  54. Lowen, G.G., Berkof, R.S., Tepper, F.R.: Balancing of linkages - an update. Mech. Mach. Theory 18(3), 213–220 (1983). https://doi.org/10.1016/0094-114X(83)90092-7

    Article  Google Scholar 

  55. Berkof, R.S.: Complete force and moment balancing of inline four-bar linkages. Mech. Mach. Theory 8(3), 397–410 (1973). https://doi.org/10.1016/0094-114X(73)90076-1

    Article  Google Scholar 

  56. Berkof, R.S., Lowen, G.G., Tepper, F.R.: Balancing of linkages. Shock Vibr. Dig. 9(6), 3–10 (1977). https://doi.org/10.1177/058310247700900603

    Article  Google Scholar 

  57. Ye, Z., Smith, M.R.: Complete balancing of planar linkages by an equivalence method. Mech. Mach. Theory 29(5), 701–712 (1994). https://doi.org/10.1016/0094-114X(94)90112-0

    Article  Google Scholar 

  58. Arakelian, V.H., Smith, M.R.: Shaking force and shaking moment balancing of mechanisms: a historical review with new examples. J. Mech. Des. 127(2), 334–339 (2005). https://doi.org/10.1115/1.1829067

    Article  Google Scholar 

  59. Arakelian, V.H., Smith, M.R.: Erratum: shaking force and shaking moment balancing of mechanisms: a historical review with new examples. J. Mech. Des. 127(5), 1034–1035 (2005). https://doi.org/10.1115/1.1955537

    Article  Google Scholar 

  60. Ricard, R., Gosselin, C.M.: On the development of reactionless parallel manipulators. In: Proceedings of the ASME 2000 IDETC/CIE, Baltimore, USA, vol. 7A, pp. 493–502. ASME (2000). https://doi.org/10.1115/DETC2000/MECH-14098

  61. Gosselin, C.M., Vollmer, F., Côté, G., Wu, Y.: Synthesis and design of reactionless three-degree-of-freedom parallel mechanisms. IEEE Trans. Robot. Autom. 20(2), 191–199 (2004). https://doi.org/10.1109/TRA.2004.824696

    Article  Google Scholar 

  62. Wu, Y., Gosselin, C.M.: Synthesis of reactionless spatial 3-DoF and 6-DoF mechanisms without separate counter-rotations. Int. J. Robot. Res. 23(6), 625–642 (2004). https://doi.org/10.1177/0278364904044400

    Article  Google Scholar 

  63. de Jong, J.J., Müller, A., Herder, J.L.: Higher-order derivatives of rigid body dynamics with application to the dynamic balance of spatial linkages. Mech. Mach. Theory 155, 104059 (2020). https://doi.org/10.1016/j.mechmachtheory.2020.104059

    Article  Google Scholar 

  64. Bagci, C.: Shaking force balancing of planar linkages with force transmission irregularities using balancing idler loops. Mech. Mach. Theory 14(4), 267–284 (1979). https://doi.org/10.1016/0094-114X(79)90013-2

    Article  Google Scholar 

  65. Tepper, F.R., Lowen, G.G.: General theorems concerning full force balancing of planar linkages by internal mass redistribution. J. Eng. Ind. 94(3), 789–796 (1972). https://doi.org/10.1115/1.3428252

    Article  Google Scholar 

  66. Streit, D.A.: Spatial manipulator and six degree of freedom platform - spring equilibrator theory. In: Proceedings of the 2nd National Conference on Applied Mechanisms and Robotics, Cincinnati, USA, p. VIIIB.1 (1991)

    Google Scholar 

  67. Arakelian, V.H., Dahan, M., Smith, M.: A historical review of the evolution of the theory on balancing of mechanisms. In: Ceccarelli, M. (ed.) International Symposium on History of Machines and Mechanisms 2000, Cassino, pp. 291–300. Springer (2000). https://doi.org/10.1007/978-94-015-9554-4_33

  68. de Jong, J.J., Wu, Y., Carricato, M., Herder, J.L.: A pure-inertia method for dynamic balancing of symmetric planar mechanisms. In: Lenarcic, J., Parenti-Castelli, V. (eds.) International Symposium on Advances in Robot Kinematics, Bologna, Italy, vol. 8, pp. 277–284. Springer (2018). https://doi.org/10.1007/978-3-319-93188-3_32

  69. Asada, H., Youcef-Toumi, K.: Analysis and design of a direct-drive arm with a five-bar-link parallel drive mechanism. J. Dyn. Sys. Meas. Control 106(3), 225–230 (1984). https://doi.org/10.1115/1.3149676

    Article  Google Scholar 

  70. Simionescu, I., Ciupitu, L.: The static balancing of the industrial robot arms part I: discrete balancing. Mech. Mach. Theory 35(9), 1287–1298 (2000). https://doi.org/10.1016/S0094-114X(99)00067-1

    Article  Google Scholar 

  71. Bruzzone, L., Bozzini, G.: A statically balanced SCARA-like industrial manipulator with high energetic efficiency. Meccanica 46(4), 771–784 (2011). https://doi.org/10.1007/s11012-010-9336-6

    Article  MATH  Google Scholar 

  72. Kazerooni, H.: Statically balanced direct drive manipulator. Robotica 7(2), 143–149 (1989). https://doi.org/10.1017/S0263574700005452

    Article  Google Scholar 

  73. Jean, M., Gosselin, C.M.: Static balancing of planar parallel manipulators. In: Proceedings of the IEEE 1996 ICRA, Minneapolis, USA, vol. 4, pp. 3732–3737. IEEE (1996). https://doi.org/10.1109/ROBOT.1996.509282

  74. Gosselin, C.M., Wang, J.: Static balancing of spatial six-degree-of-freedom parallel mechanisms with revolute actuators. J. Robot. Syst. 17(3), 159–170 (2000). https://doi.org/10.1002/(SICI)1097-4563(200003)17:3<159::AID-ROB3>3.0.CO;2-J

  75. Takahashi, T., Zehnder, J., Okuno, H.G., Sugano, S., Coros, S., Thomaszewski, B.: Computational design of statically balanced planar spring mechanisms. IEEE Robot. Autom. Lett. 4(4), 4438–4444 (2019). https://doi.org/10.1109/LRA.2019.2929984

    Article  Google Scholar 

  76. Ebert-Uphoff, I., Gosselin, C.M., Laliberté, T.: Static balancing of spatial parallel platform mechanisms-revisited. J. Mech. Des. 122(1), 43–51 (2000). https://doi.org/10.1115/1.533544

    Article  Google Scholar 

  77. Martini, A., Troncossi, M., Carricato, M., Rivola, A.: Elastodynamic behavior of balanced closed-loop mechanisms: numerical analysis of a four-bar linkage. Meccanica 49(3), 601–614 (2014). https://doi.org/10.1007/s11012-013-9815-7

    Article  MATH  Google Scholar 

  78. Martini, A., Troncossi, M., Carricato, M., Rivola, A.: Modal and kineto-elastodynamic analyses of balanced four-bar linkages. In: Arczewski, K., Frączek, M.W.J. (eds.) Proceedings of the Multibody Dynamics 2009. ECCOMAS Thematic Conferences. ECCOMAS, Warsaw, Poland, pp. 1–20 (2009)

    Google Scholar 

  79. Minotti, P., Pracht, P.: Ressorts et mécanismes: Une solution aux problèmes d’équilibrage. Mech. Mach. Theory 23(1–2), 157–168 (1988). https://doi.org/10.1016/0094-114X(88)90093-6

    Article  Google Scholar 

  80. Streit, D.A., Gilmore, B.J.: ‘Perfect’ spring equilibrators for rotatable bodies. J. Mech. Trans. 111(4), 451–458 (1989). https://doi.org/10.1115/1.3259020

    Article  Google Scholar 

  81. Wongratanaphisan, T., Chew, M.: Gravity compensation of spatial two-DOF serial manipulators. J. Robot. Syst. 19(7), 329–347 (2002). https://doi.org/10.1002/rob.10044

    Article  MATH  Google Scholar 

  82. Hain, K.: Der Federausgleich von Lasten. Grundlagen der Landtechnik - Konstrukteurhefte (3), 38–50 (1952)

    Google Scholar 

  83. Hain, K.: Gelenkarme Bandgetriebe für den Kraftausgleich durch Federn. Grundlagen der Landtechnik - Konstrukteurhefte (4), 100–109 (1953)

    Google Scholar 

  84. Herder, J.L.: Design of spring force compensation systems. Mech. Mach. Theory 33(1–2), 151–161 (1998). https://doi.org/10.1016/S0094-114X(97)00027-X

    Article  MATH  Google Scholar 

  85. Deepak, S.R., Ananthasuresh, G.K.: Perfect static balance of linkages by addition of springs but not auxiliary bodies. J. Mech. Robot. 4(2), 021014 (2012). https://doi.org/10.1115/1.4006521

    Article  Google Scholar 

  86. Kuo, Y.L., Lan, C.C.: A two-dimensional adjustable constant-force mechanism. J. Mech. Des. 142(6), 063304 (2020). https://doi.org/10.1115/1.4044917

    Article  Google Scholar 

  87. Streit, D.A., Chung, H., Gilmore, B.J.: Perfect equilibrators for rigid body spatial rotations about a Hooke’s joint. J. Mech. Des. 113(4), 500–507 (1991). https://doi.org/10.1115/1.2912811

    Article  Google Scholar 

  88. Walsh, G.J., Streit, D.A., Gilmore, B.J.: Spatial spring equilibrator theory. Mech. Mach. Theory 26(2), 155–170 (1991). https://doi.org/10.1016/0094-114X(91)90080-N

    Article  Google Scholar 

  89. Sweere, H.C., Fluhrer, R.W., Al-Zebdeh, K., Eliason, J., Lindblad, S.C., Showalter, M.J., Theis, J.W., Benson, C.D.: Monitor support system. U.S. Patent 6994306 (2006)

    Google Scholar 

  90. Jackson, E.V., Matthew, M.P.: Instrument table. U.S. Patent 3179364 (1965)

    Google Scholar 

  91. Nathan, R.H.: Constant force generator mechanism and adjustable seat constructed therewith. U.S. Patent 4387876 (1983)

    Google Scholar 

  92. Rivin, E.: Stiffness and Damping in Mechanical Design, pp. 369–375. Marcel Dekker, New York (1999). Chap 8.4

    Google Scholar 

  93. Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301(3–5), 678–689 (2006). https://doi.org/10.1016/j.jsv.2006.10.011

    Article  Google Scholar 

  94. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3–5), 371–452 (2008). https://doi.org/10.1016/j.jsv.2008.01.014

    Article  Google Scholar 

  95. Park, S.T., Luu, T.T.: Techniques for optimizing parameters of negative stiffness. J. Mech. Eng. Sci. 221(5), 505–510 (2007). https://doi.org/10.1243/0954406JMES390

    Article  Google Scholar 

  96. Schenk, M., Guest, S.D.: On zero stiffness. J. Mech. Eng. Sci. 228(10), 1701–1714 (2014). https://doi.org/10.1177/0954406213511903

    Article  Google Scholar 

  97. Tarnai, T.: Zero stiffness elastic structures. Int. J. Mech. Sci. 45(3), 425–431 (2003). https://doi.org/10.1016/S0020-7403(03)00063-8

    Article  MATH  Google Scholar 

  98. Gallego, J.A., Herder, J.L.: Buckling as a new perspective on static balancing of mechanisms. In: Chicurel-Uziel, R., Rico, J. (eds.) Proceedings of the 13th World Congress in Mechanism and Machine Science, IFToMM, Guanajuato, México, pp. 1–7 (2011)

    Google Scholar 

  99. Numić, A., Blad, T.W.A., van Keulen, F.: Stiffness compensation through matching buckling loads in a compliant four-bar mechanism. J. Mech. Robot. 14(2), 021007 (2021). https://doi.org/10.1115/1.4052333

    Article  Google Scholar 

  100. Seffen, K.A., Pellegrino, S.: Deployment dynamics of tape springs. Proc. Roy. Soc. Lond. A 455(1983), 1003–1048 (1999). https://doi.org/10.1098/rspa.1999.0347

    Article  MathSciNet  MATH  Google Scholar 

  101. Mao, H., Ganga, P.L., Ghiozzi, M., Ivchenko, N., Tibert, G.: Deployment of bistable self-deployable tape spring booms using a gravity offloading system. J. Aerosp. Eng. 30(4), 04017007 (2017). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000709

    Article  Google Scholar 

  102. Wilkes, D.F.: Roller-band devices. U.S. Patent 3452175 (1969)

    Google Scholar 

  103. te Riele, F.L.S., Herder, J.L.: Perfect static balance with normal springs. In: Proceedings of the ASME 2001 IDETC/CIE, Pittsburgh, USA, vol. 2A, pp. 571–578. ASME (2001). https://doi.org/10.1115/DETC2001/DAC-21069

  104. Barents, R., Schenk, M., van Dorsser, W.D., Wisse, B.M.: Spring-to-spring balancing as energy-free adjustment method in gravity equilibrators. J. Mech. Des. 133(6), 061010 (2011). https://doi.org/10.1115/1.4004101

    Article  Google Scholar 

  105. Nguyen, V.L., Lin, C.Y., Kuo, C.H.: Gravity compensation design of Delta parallel robots using gear-spring modules. Mech. Mach. Theory 154, 104046 (2020). https://doi.org/10.1016/j.mechmachtheory.2020.104046

    Article  Google Scholar 

  106. French, M.J., Widden, M.B.: The spring-and-lever balancing mechanism, George Carwardine and the Anglepoise lamp. J. Mech. Eng. Sci. 214(3), 501–508 (2000). https://doi.org/10.1243/0954406001523137

    Article  Google Scholar 

  107. Gosselin, C.M.: Static balancing of spherical 3-DOF parallel mechanisms and manipulators. Int. J. Robot. Res. 18(8), 819–829 (1999). https://doi.org/10.1177/02783649922066583

    Article  Google Scholar 

  108. Kim, H.S., Song, J.B.: Multi-DOF counterbalance mechanism for a service robot arm. IEEE/ASME Trans. Mechatron. 19(6), 1756–1763 (2014). https://doi.org/10.1109/TMECH.2014.2308312

    Article  Google Scholar 

  109. Yang, Z.W., Lan, C.C.: An adjustable gravity-balancing mechanism using planar extension and compression springs. Mech. Mach. Theory 92, 314–329 (2015). https://doi.org/10.1016/j.mechmachtheory.2015.05.006

    Article  Google Scholar 

  110. Soper, R.R., Mook, D.T., Reinholtz, C.F.: Vibration of nearly perfect spring equilibrators. In: Proceedings of the ASME 1997 IDETC/CIE, Sacramento, USA, vol. 2, p. V002T29A026. ASME (1997). https://doi.org/10.1115/DETC97/DAC-3768

  111. Zobairi, M.A.K., Rao, S.S., Sahay, B.: Kineto-elastodynamic balancing of 4R-four-bar mechanisms by internal mass redistribution. Mech. Mach. Theory 21(4), 317–323 (1986). https://doi.org/10.1016/0094-114X(86)90053-4

    Article  Google Scholar 

  112. Martini, A., Troncossi, M., Rivola, A.: Elastodynamic effects of mass-balancing: experimental investigation of a four-bar linkage. Adv. Mech. Eng. 5, 949457 (2013). https://doi.org/10.1155/2013/949457

    Article  Google Scholar 

  113. Martini, A., Troncossi, M., Rivola, A.: Algorithm for the static balancing of serial and parallel mechanisms combining counterweights and springs: generation, assessment and ranking of effective design variants. Mech. Mach. Theory 137, 336–354 (2019). https://doi.org/10.1016/j.mechmachtheory.2019.03.031

    Article  Google Scholar 

  114. Agrawal, S.K., Fattah, A.: Gravity-balancing of spatial robotic manipulators. Mech. Mach. Theory 39(12), 1331–1344 (2004). https://doi.org/10.1016/j.mechmachtheory.2004.05.019

    Article  MathSciNet  MATH  Google Scholar 

  115. Laliberté, T., Gosselin, C.M., Jean, M.: Static balancing of 3-DOF planar parallel mechanisms. IEEE Trans. Mechatron. 4(4), 363–377 (1999). https://doi.org/10.1109/3516.809515

    Article  Google Scholar 

  116. Streit, D.A., Shin, E.: Equilibrators for planar linkages. J. Mech. Des. 115(3), 604–611 (1993). https://doi.org/10.1115/1.2919233

    Article  Google Scholar 

  117. Okada, T.: Optimization of mechanisms for force generation by using pulleys and spring. Int. J. Robot. Res. 5(1), 77–89 (1986). https://doi.org/10.1177/027836498600500105

    Article  Google Scholar 

  118. Wang, J., Gosselin, C.M.: Static balancing of spatial three-degree-of-freedom parallel mechanisms. Mech. Mach. Theory 34(3), 437–452 (1999). https://doi.org/10.1016/S0094-114X(98)00031-7

    Article  MathSciNet  MATH  Google Scholar 

  119. Russo, A., Sinatra, R., Xi, F.: Static balancing of parallel robots. Mech. Mach. Theory 40(2), 191–202 (2005). https://doi.org/10.1016/j.mechmachtheory.2004.06.011

    Article  MathSciNet  MATH  Google Scholar 

  120. Martini, A., Troncossi, M., Carricato, M., Rivola, A.: Static balancing of a parallel kinematics machine with Linear-Delta architecture: theory, design and numerical investigation. Mech. Mach. Theory 90, 128–141 (2015). https://doi.org/10.1016/j.mechmachtheory.2015.03.003

    Article  Google Scholar 

  121. Martini, A.: Gravity compensation of a 6-UPS parallel kinematics machine tool through elastically balanced constant-force generators. FME Trans. 46(1), 10–16 (2018). https://doi.org/10.5937/fmet1801010M

    Article  Google Scholar 

  122. Carrabotta, R., Martini, A., Troncossi, M., Rivola, A.: Optimal static balancing of a spatial palletizing robot. In: Font-Llagunes, J.M. (ed.) Proceedings of the Multibody Dynamics 2015, ECCOMAS Thematic Conference, ECCOMAS, Barcelona, Spain, pp. 817–827 (2015)

    Google Scholar 

  123. Agrawal, S.K., Gardner, G., Pledgie, S.: Design and fabrication of an active gravity balanced planar mechanism using auxiliary parallelograms. J. Mech. Des. 123(4), 525–528 (2001). https://doi.org/10.1115/1.1413771

    Article  Google Scholar 

  124. Brown, G.W.: Equipment for use with hand held motion picture camera. U.S. Patent 4017168 (1977)

    Google Scholar 

  125. Kang, L., Oh, S.M., Kim, W., Yi, B.J.: Design of a new gravity balanced parallel mechanism with Schönflies motion. J. Mech. Eng. Sci. 230(17), 3111–3134 (2016). https://doi.org/10.1177/0954406215605862

    Article  Google Scholar 

  126. Shin, E., Streit, D.A.: Spring equilibrator theory for static balancing of planar pantograph linkages. Mech. Mach. Theory 26(7), 645–657 (1991). https://doi.org/10.1016/0094-114X(91)90027-2

    Article  Google Scholar 

  127. Berkof, R.S., Lowen, G.G.: A new method for completely force balancing simple linkages. J. Eng. Ind. 91(1), 21–26 (1969). https://doi.org/10.1115/1.3591524

    Article  Google Scholar 

  128. Lacasse, M.A., Lachance, G., Boisclair, J., Ouellet, J., Gosselin, C.M.: On the design of a statically balanced serial robot using remote counterweights. In: Proceedings of the IEEE 2013 ICRA, Karlsruhe, Germany, pp. 4189–4194. IEEE (2013). https://doi.org/10.1109/ICRA.2013.6631169

  129. Kolovsky, M., Evgrafov, A.N., Semenov, Y.A., Slousch, A.V.: Advanced Theory of Mechanisms and Machines. Foundations of Engineering Mechanics, pp 237–239. Springer (2000). Chap 7.2. https://doi.org/10.1007/978-3-540-46516-4

  130. van Dorsser, W.D., Barents, R., Wisse, B.M., Herder, J.L.: Gravity-balanced arm support with energy-free adjustment. J. Med. Dev. 1(2), 151–158 (2007). https://doi.org/10.1115/1.2736400

    Article  Google Scholar 

  131. Franchetti, D., Boschetti, G., Lenzo, B.: Passive gravity balancing with a self-regulating mechanism for variable payload. Machines 9(8), 145 (2021). https://doi.org/10.3390/machines9080145

    Article  Google Scholar 

  132. Arsenault, M., Gosselin, C.M.: Kinematic, static, and dynamic analysis of a planar one-degree-of-freedom tensegrity mechanism. J. Mech. Des. 127(6), 1152–1160 (2005). https://doi.org/10.1115/1.1913705

    Article  Google Scholar 

  133. Schenk, M., Guest, S.D., Herder, J.L.: Zero stiffness tensegrity structures. Int. J. Solids Struct. 44(20), 6569–6583 (2006). https://doi.org/10.1016/j.ijsolstr.2007.02.041

    Article  MathSciNet  MATH  Google Scholar 

  134. Arsenault, M., Gosselin, C.M.: Static balancing of tensegrity mechanisms. J. Mech. Des. 129(3), 295–300 (2007). https://doi.org/10.1115/1.2406100

    Article  Google Scholar 

  135. Shekarforoush, S.M.M., Eghtesad, M., Farid, M.: Kinematic and static analyses of statically balanced spatial tensegrity mechanism with active compliant components. J. Intell. Robot. Syst. 71(3), 287–302 (2013). https://doi.org/10.1007/s10846-012-9784-4

    Article  Google Scholar 

  136. Gallego, J.A., Herder, J.L.: Criteria for the static balancing of compliant mechanisms. In: Proceedings of the ASME 2010 IDETC/CIE, Montreal, Canada, vol. 2, pp. 465–473. ASME (2010). https://doi.org/10.1115/DETC2010-28469

  137. Chen, G., Zhang, S.: Fully-compliant statically-balanced mechanisms without prestressing assembly: concepts and case studies. Mech. Sci. 2(2), 169–174 (2011). https://doi.org/10.5194/ms-2-169-2011

    Article  Google Scholar 

  138. Radaelli, G., Herder, J.L.: Isogeometric shape optimization for compliant mechanisms with prescribed load paths. In: Proceedings of the ASME 2014 IDETC/CIE, Buffalo, USA, vol. 5A, p. V05AT08A046. ASME (2014). https://doi.org/10.1115/DETC2014-35373

  139. Radaelli, G., Herder, J.L.: A monolithic compliant large-range gravity balancer. Mech. Mach. Theory 102, 55–67 (2016). https://doi.org/10.1016/j.mechmachtheory.2016.03.015

    Article  Google Scholar 

  140. Radaelli, G., Herder, J.L.: Gravity balanced compliant shell mechanisms. Int. J. Solids Struct. 118–119, 78–88 (2017). https://doi.org/10.1016/j.ijsolstr.2017.04.021

    Article  Google Scholar 

  141. Hou, C.W., Lan, C.C.: Functional joint mechanisms with constant-torque outputs. Mech. Mach. Theory 62, 166–181 (2013). https://doi.org/10.1016/j.mechmachtheory.2012.12.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Carricato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mottola, G., Cocconcelli, M., Rubini, R., Carricato, M. (2022). Gravity Balancing of Parallel Robots by Constant-Force Generators. In: Arakelian, V. (eds) Gravity Compensation in Robotics. Mechanisms and Machine Science, vol 115. Springer, Cham. https://doi.org/10.1007/978-3-030-95750-6_9

Download citation

Publish with us

Policies and ethics