Skip to main content

A Pilot Study on FoG Prediction Using Machine Learning for Rehabilitation

  • Conference paper
  • First Online:
Artificial Intelligence and Speech Technology (AIST 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1546))

  • 976 Accesses

Abstract

Walking has a significant impact on one’s quality of life. Freezing of Gait (FoG) is a typical symptom of Parkinson’s disease (PD). FoG is characterised by quick and abrupt transient falls, as a result of which the patient’s mobility is limited and their independence is lost. Thus, early detection of FoG in PD patients is necessary for diagnosis and rehabilitation. The present strategies for early detection of FoG are ineffective and have a low success rate. This study illustrates the comparative analysis of ML techniques (K Nearest Neighbors (KNN), Decision Trees, Random Forest, Support Vector Classifier (SVC), and Ada Boost Classifier), using time and statistical features to perform detection and prediction tasks on the publicly available DaphNet database. FoG prediction is highly patient dependent and achieved a peak F1 - score of 80% for one of the patients. The paper also present a combined analysis of all the patients which may aid in designing wearable sensors for detection. This system detects FoG with a precision value of about 81%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bächlin, M., et al.: Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom. IEEE Trans. Inf. Technol. Biomed. 14(2), 436–46 (2010)

    Article  Google Scholar 

  2. Bächlin, M., Plotnik, M., Roggen, D., Giladi, N., Hausdorff, J.M., Tröster, G.: A wearable system to assist walking of Parkinson’s disease patients. Meth. Inf. Med. 49(01), 88–95 (2010)

    Article  Google Scholar 

  3. Schaafsma, J.D., et al.: Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease. Euro. J. Neurol. 10(4), 391–398 (2003)

    Google Scholar 

  4. Bissessur, S., Tissingh, G., Wolters, E.C., Scheltens, P.: rCBF SPECT in Parkinson’s diseasepatients with mental dysfunction. In: Riederer, P., Calne, D.B., Horowski, R., Mizuno, Y., Poewe, W., Youdim, M.B.H. (eds.) Advances in Research on Neurodegeneration. Journal of Neural Transmission. Supplementa, vol. 50, pp. 25–30. Springer, Vienna (1997)

    Google Scholar 

  5. Gewirtz, J.C., Falls, W.A., Davis, M.: Normal conditioning inhibition and extinction of freezing and fear-potentiated startle following electrolytic lesions of medial prefrontal cortex in rats. Behav. Neurosci. 111(4), 712 (1997)

    Article  Google Scholar 

  6. Oung, Q.W., et al.: Technologies for assessment of motor disorders in Parkinson’s disease: a review. Sensors 15(9), 21710–21745 (2015)

    Google Scholar 

  7. Elbaz, A., et al.: Risk tables for parkinsonism and Parkinson’s disease. J. clin. Epidemiol. 55(1), 25–31 (2002)

    Google Scholar 

  8. Sung, M., Marci, C., Pentland, A.: Wearable feedback systems for rehabilitation. J. Neuroeng. Rehabil. 2(1), 17 (2005)

    Article  Google Scholar 

  9. Van Den Eeden, S.K., et al.: Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity. Am. J. Epidemiol. 157(11), 1015–1022 (2003)

    Google Scholar 

  10. Segev-Jacubovski, O., Herman, T., Yogev-Seligmann, G., Mirelman, A., Giladi, N., Hausdorff, J.M.: The interplay between gait, falls and cognition: can cognitive therapy reduce fall risk? Expert Rev. Neurother. 11(7), 1057–1075 (2011)

    Article  Google Scholar 

  11. Bachlin, M., et al.: Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom. IEEE Trans. Inf. Technol. Biomed. 14(2), 436–446 (2010)

    Article  Google Scholar 

  12. Handojoseno, A.M.A., et al.: The detection of freezing of Gait in Parkinson’s disease patients using EEG signals based on Wavelet decomposition. In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, pp. 69–72. IEEE (2012)

    Google Scholar 

  13. Takač, B., Català, A., Rodríguez, D., Chen, W., Rauterberg, M.: Ambient sensor system for freezing of gait detection by spatial context analysis. In: Bravo, J., Hervás, R., Rodríguez, M. (eds.) IWAAL 2012. LNCS, vol. 7657, pp. 232–239. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35395-6_32

    Chapter  Google Scholar 

  14. Mazilu, S., et al.: Feature learning for detection and prediction of freezing of Gait in Parkinson’s disease. In: Perner, P. (ed.) MLDM 2013. LNCS (LNAI), vol. 7988, pp. 144–158. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39712-7_11

    Chapter  Google Scholar 

  15. Jovanov, E., Wang, E., Verhagen, L., Fredrickson, M., Fratangelo, R.: deFoG-A real time system for detection and unfreezing of gait of Parkinson’s patients. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 5151–5154. IEEE (2009)

    Google Scholar 

  16. Moore, O., Peretz, C., Giladi, N.: Freezing of gait affects quality of life of peoples with Parkinson’s disease beyond its relationships with mobility and gait. Mov. Disord. Offic. J. Mov. Disord. Soc. 22(15), 2192–2195 (2007)

    Article  Google Scholar 

  17. Saad, A.: Detection of Freezing of Gait in Parkinson’s disease. Université du Havre, PhD diss. (2016)

    Google Scholar 

  18. Torvi, V.G., Bhattacharya, A., Chakraborty, S.: Deep Domain Adaptation to Predict Freezing of Gait in Patients with Parkinson’s Disease. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1001–1006. IEEE (2018)

    Google Scholar 

  19. Raccagni, C., et al.: Sensor?based gait analysis in atypical parkinsonian disorders. Brain Behav. 8(6), e00977 (2018)

    Google Scholar 

  20. Zia, J., Tadayon, A., McDaniel, T., Panchanathan, S.: Utilizing neural networks to predict freezing of gait in parkinson’s patients. In: Proceedings of the 18th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 333–334. ACM, October 2016

    Google Scholar 

  21. Shibuya, N., et al.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (SVM) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67. IEEE (2015)

    Google Scholar 

  22. Tripoliti, E.E., et al.: Automatic detection of freezing of gait events in patients with Parkinson’s disease. Comput. Meth. Program. Biomed. 110(1), 12–26 (2013)

    Article  Google Scholar 

  23. Nieuwboer, A., Giladi, N.: Characterizing freezing of gait in Parkinson’s disease: models of an episodic phenomenon. Mov. Disord. 28(11), 1509–1519 (2013)

    Article  Google Scholar 

  24. Mazilu, S., et al.: Online detection of freezing of gait with smartphones and machine learning techniques. In: 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 123–130. IEEE (2012)

    Google Scholar 

  25. Snijders, A.H. et al.: Gait-related cerebral alterations in patients with Parkinson’s disease with freezing of gait. Brain 134(1), 59–72 (2010)

    Google Scholar 

  26. Das, R.: A comparison of multiple classification methods for diagnosis of Parkinson disease. Expert Syst. Appl. 37(2), 1568–1572 (2010)

    Article  Google Scholar 

  27. Bloem, B.R., Hausdorff, J.M., Visser, J.E., Giladi, N.: Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov. Disord. Offic. J. Mov. Disord. Soc. 19(8), 871–884 (2004)

    Article  Google Scholar 

  28. Han, J.H., Lee, W.J., Ahn, T.B., Jeon, B.S., Park, K.S.: Gait analysis for freezing detection in patients with movement disorder using three dimensional acceleration system. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), vol. 2, pp. 1863–1865. IEEE (2003)

    Google Scholar 

  29. Cole, B.T., Roy, S.H., De Luca, C.J., Nawab, S.H.: Dynamic neural network detection of tremor and dyskinesia from wearable sensor data. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6062–6065. IEEE (2010)

    Google Scholar 

  30. Bachlin, M., et al.: Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom. IEEE Trans. Inf. Technol. Biomed. 14(2), 436–446 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Prakash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kharbanda, K., Prakash, C. (2022). A Pilot Study on FoG Prediction Using Machine Learning for Rehabilitation. In: Dev, A., Agrawal, S.S., Sharma, A. (eds) Artificial Intelligence and Speech Technology. AIST 2021. Communications in Computer and Information Science, vol 1546. Springer, Cham. https://doi.org/10.1007/978-3-030-95711-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95711-7_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95710-0

  • Online ISBN: 978-3-030-95711-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics