Skip to main content

The Case for Digital Twins in Healthcare

  • Chapter
  • First Online:
Digital Disruption in Healthcare

Part of the book series: Healthcare Delivery in the Information Age ((Healthcare Delivery Inform. Age))

Abstract

Digital twins, a virtual representation that is essentially a real-time digital counterpart of a physical object or process, first originated from NASA in an attempt to improve the physical model simulation of spacecraft in 2010. Since the explosion of the Internet of Things (IoT), digital twins have become cost-effective and have been used successfully in manufacturing and service sectors to revolutionize these sectors. It is no surprise, then, given the benefits, digital twins have brought to manufacturing and service industries that one can imagine that similar benefits could be realized in health care. This chapter serves to outline how and why we might want to conceptualize digital twins for health care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fagherazzi, G. (2020). Deep digital phenotyping and digital twins for precision health: Time to dig deeper. Journal of Medical Internet Research, 22(3), e16770.

    Article  Google Scholar 

  2. Haag, S., & Anderl, R. (2018). Digital twin–Proof of concept. Manufacturing Letters, 15, 64–66.

    Article  Google Scholar 

  3. Barricelli, B., Casiraghi, E., & Fogli, D. (2019). A survey on digital twin: Definitions, characteristics, applications, and design implications. IEEE Access, 7, 167653–167671.

    Article  Google Scholar 

  4. Liu, Y., Zhang, L., Yang, Y., Zhou, Y., Ren, L., Wang, F., Liu, R., Pang, Z., & Deen, M. J. (2019). A novel cloud-based framework for the elderly healthcare services using digital twin. IEEE Access, 7, 49088–49101.

    Article  Google Scholar 

  5. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., & Sui, F. (2018). Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology, 94(9–12), 3563–3576.

    Article  Google Scholar 

  6. Raghupathi, W., & Raghupathi, V. (2014). Big data analytics in healthcare: Promise and potential. Health Information Science and Systems, 2(1), 3.

    Article  Google Scholar 

  7. Croatti, M., Gabellini, S., Montagna, S., & Ricci, A. (2020). On the integration of agents and digital twins in healthcare. Journal of Medical Systems, 44(9), 1–8.

    Article  Google Scholar 

  8. Hirschvogel, M., Jagschies, L., Maier, A., Wildhirt, S. M., & Gee, M. W. (2019). An in silico twin for epicardial augmentation of the failing heart. International Journal for Numerical Methods in Biomedical Engineering, 35(10), e3233.

    Article  MathSciNet  Google Scholar 

  9. Lauzeral, N., Borzacchiello, D., Kugler, M., George, D., Remond, Y., Hostettler, A., & Chinesta, F. (2019). A model order reduction approach to create patient-specific mechanical models of human liver in computational medicine applications. Computer Methods and Programs in Biomedicine, 170, 95–106.

    Article  Google Scholar 

  10. Renaudin, C. P., Barbier, B., Roriz, R., Revel, D., & Amiel, M. (1994). Coronary arteries: New design for three-dimensional arterial phantoms. Radiology, 190(2), 579–582.

    Article  Google Scholar 

  11. David, J., Lobov, A., & Lanz, M. (2018, October). Learning experiences involving digital twins. In IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society (pp. 3681–3686). IEEE.

    Google Scholar 

  12. Rasheed, A., San, O., & Kvamsdal, T. (2020). Digital twin: Values, challenges and enablers from a modeling perspective. IEEE Access, 8, 21980–22012.

    Google Scholar 

  13. Fisher, C. K., Smith, A. M., & Walsh, J. R. (2019). Coalition Against Major Diseases; Abbott, Alliance for Aging Research, Alzheimer’s Association, Alzheimer’s Foundation of America, AstraZeneca Pharmaceuticals LP, Bristol-Myers Squibb Company, Critical Path Institute, CHDI Foundation, Inc., Eli Lilly and Company, F. Hoffmann-La Roche Ltd, Forest Research Institute, Genentech, Inc., GlaxoSmithKline, Johnson & Johnson, National Health Council, Novartis Pharmaceuticals Corporation, Parkinson’s Action Network, Parkinson’s Disease Foundation, Pfizer, Inc., sanofi-aventis. Collaborating Organizations: Clinical Data Interchange Standards Consortium (CDISC), Ephibian, Metrum Institute. Machine learning for comprehensive forecasting of Alzheimer’s Disease progression. Scientific Reports, 9(1), 13622. https://doi.org/10.1038/s41598-019-49656-2. PMID: 31541187; PMCID: PMC6754403.

  14. Ctri. (2020). A novel whole body digital twin enabled precision treatment for reversing diabetes. Retrieved from http://www.who.int/trialsearch/Trial2.aspx?TrialID=CTRI/2020/08/027072

  15. Liu, Y., & Deen, M. J. (2019). A novel cloud-based framework for the elderly healthcare services using digital twin. IEEE Access, 7, 49088–49101.

    Article  Google Scholar 

  16. Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., et al. (2001). A four-dimensional probabilistic atlas of the human brain. Journal of the American Medical Informatics Association, 8(5), 401–430.

    Article  Google Scholar 

  17. Psaty, B. M., Dekkers, O. M., & Cooper, R. S. (2018). Comparison of 2 treatment models: Precision medicine and preventive medicine. JAMA, 320(8), 751–752.

    Article  Google Scholar 

  18. US Dept of Health and Human Services. (2021, 22 September 2020). What is precision medicine? Retrieved 2021, from https://medlineplus.gov/genetics/understanding/precisionmedicine/definition/

  19. Bruynseels, K., Santoni de Sio, F., & van den Hoven, J. (2018). Digital twins in health care: Ethical implications of an emerging engineering paradigm. Frontiers in Genetics, 9, 31.

    Article  Google Scholar 

  20. Daniels, N. (2000). Normal functioning and the treatment-enhancement distinction. Cambridge Quarterly of Healthcare Ethics, 9, 309–322. https://doi.org/10.1017/S0963180100903037

    Article  Google Scholar 

  21. Boschert, S., & Rosen, R. (2016). Digital twin—The simulation aspect. In Mechatronic futures (pp. 59–74). Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wickramasinghe, N. (2022). The Case for Digital Twins in Healthcare. In: Wickramasinghe, N., Chalasani, S., Sloane, E. (eds) Digital Disruption in Healthcare. Healthcare Delivery in the Information Age. Springer, Cham. https://doi.org/10.1007/978-3-030-95675-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95675-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95674-5

  • Online ISBN: 978-3-030-95675-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics