Skip to main content

Major Groundwater Reservoirs of Egypt

  • Chapter
  • First Online:
The Phanerozoic Geology and Natural Resources of Egypt

Abstract

Egypt is known as the Nile’s gift because it relies on the Nile River for around 94% of its freshwater resources. As a result, Egypt’s national security is clearly dependent on the Nile River, where over a hundred million people are now concentrated in a narrow swath of the Nile Valley, which stretches from Aswan in the south to Cairo in the north. The Nile Valley and Delta are home to more than 97% of Egypt’s population. The Nile River supplies Egypt with 55.5 billion m3/year reflecting that the average available fresh water resources stand at 600 m3/year/capita in 2020 but considering population growth is expected to drop below the 500 m3/year/capita threshold of absolute water scarcity by 2030. The strategy of the Egyptian Government indicates that the agriculture sector holds 85%, industry 9.5%, and drinking 5.5%. Egypt anticipates a severe water shortage because of the Grand Ethiopian Renaissance Dam (GERD) building upstream of the Blue Nile. Great water demands due to increasing population rate and fixing water resource budget along with great water losses due to evaporation damming of water flow and supply are expected. Therefore, a promising strategic plan to develop water resources in Egypt that depends on developing traditional and non-traditional water resource supplies is recommended. Additionally, the deep groundwater beneath the vast deserts of the western, eastern, and Sinai Peninsula along with limited quantities of rainwater and flooding are considered non-renewable resources and can be exploited according to the development conditions and the water needs. Non-traditional water resources include the reuse of exhaust uses from agriculture, industry, sanitary, industrial sewage, and desalination. This chapter sheds the light on Egypt's major groundwater reservoirs as a potential and strategic solution for water shortage for expanding agricultural and economic activities until 2030. Egypt’s primary groundwater reservoirs are comprised of six aquifers, namely: (1) the aquifers of the Nile Valley and Delta, which are recognized as Egypt’s primary source of groundwater supplies and they both provide about 85% of all groundwater abstractions. Annual aquifer withdrawals are estimated at 6.1 Bm3/year, which is mostly replenished by excess irrigation water infiltration or through the irrigation network and Nile distributaries (2) The Nubian Sandstone Aquifer System (NSAS) is Africa’s largest fossil aquifer system, with estimated reserves of 150.000 Bm3. Around 2.2 million km2 of the NSAS are shared by Egypt, Libya, Sudan, and Chad, with Egypt contributing 828,000 km2 (38%). The thickness of the fresh water-bearing layer ranges from 200 meters in East Uwinat to 3,500 meters in the northwestern of El-Farafra Oasis. Between East Uweinat and El-Farafra Oasis, the fresh water layer’s thickness ranges from 200 to 3500 m. Recent studies have revealed that the NSAS receives transboundary recharge from Egypt’s, Sudan’s, and Chad’s southern and southwestern borders, as well as local recharge through major fractures and joints along its southern outcrops; (3) the Fissured Carbonate Rock Aquifer, which occupies more than half of Egypt's land area and stretches from the Sinai Peninsula to Libya. . It serves as a confining layer on top of the Nubian Sandstone Aquifer System and features numerous natural springs.; (4) the Fissured Basement Aquifer System, which is located in the Eastern Desert and the southern Sinai Peninsula and is often recharged by modern rainfall ; (5) the Moghra aquifer, which is located in the northwestern Desert of Egypt and the groundwater is flowing towards the Qattara Depression; (6) the Coastal Aquifers that are located along the coastal areas on the Mediterranean and Red seas. The groundwater abstractions are limited due to the risk of saltwater upconing . The groundwater reserve storage in these six aquifers has been estimated to be roughly 1200 Bm3 with variable recharge rates. The long-term sustainability of these aquifers depends on corrective actions including lowering the number of pumping wells, decreasing start-up and operating times, and setting up a drip irrigation system. It is strongly advised to monitor the quantity and quality of groundwater resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdalla, F. A., & Scheytt, T. (2012). Hydrochemistry of surface water and groundwater from a fractured carbonate aquifer in the Helwan area, Egypt. Journal of Earth System Science, 121(1), 109–124.

    Article  Google Scholar 

  • Abdel Mogheeth, S. M. (1975). Hydrogeochemical studies of some water-bearing formation in ARE with special reference to the area west of the Nile Delta. Ph.D. Dissertation, Alexandria University, Egypt.

    Google Scholar 

  • Abouelmagd, A., Sultan, M., Milewski, A., Kehew, A. E., Sturchio, N. C., Soliman, F., Krishnamurthy, R. V., & Cutrim, E. (2012). Toward a better understanding of palaeoclimatic regimes that recharged the fossil aquifers in North Africa: Inferences from stable isotope and remote sensing data. Palaeogeography, Palaeoclimatology, Palaeoecology, 329–330, 137–149.

    Article  Google Scholar 

  • Abouelmagd, A., Sultan, M., Sturchio, N. C., Soliman, F., Rashed, M., Ahmed, M., Kehewa, A. E., Milewski, A., & Chouinard, K. (2014). Paleoclimate record in the Nubian sandstone aquifer, Sinai Peninsula, Egypt. Journal of Quaternary Research, 81(1), 158–167.

    Article  Google Scholar 

  • Abouelmagd, A. A. (2003). Quantitative hydrogeological studies on WadiFeiran basin, south Sinai, with emphasis on the prevailing environmental conditions. M.Sc. thesis, Fac. Sci. Suez Canal Univ., Ismailia, p. 353.

    Google Scholar 

  • Ahmed, E. H. M. (2013). Nubian sandstone aquifer system. Journal of Environmental Science and Toxicology, 1(6), 114–118.

    Google Scholar 

  • Aly, A. I. M., Nada, A., Awad, M., Hamza, M. S., & Salman, A. B. (1989). Isotope hydrological investigation on Qattara depression, Egypt. Isotopenpraxis, 25(1), 22–24.

    Google Scholar 

  • Armanious, S. D., Khalil, J. B., & Atta, S. A. (1988). Groundwater hydrology, geological and hydrogeological features of the Nile Delta Quaternary aquifer, Egypt. Journal of Civil Engineering, 1(23), 50–65.

    Google Scholar 

  • Arnous, M. O., El-Rayes, A. E., & Helmy, A. M. (2017). Land-use/land-cover change: A key to understanding land degradation and relating environmental impacts in Northwestern Sinai, Egypt. Environmental Earth Sciences, 76, 263.

    Article  Google Scholar 

  • Attia, M. L. (1954). Deposits in the Nile Valley and the Delta. Geological Survey, Egypt, Cairo, p. 356.

    Google Scholar 

  • Awad, M. A., & Nada, A. A. (1992). Tritium content of groundwater aquifer in western Nile Delta. Journal of Isotopen Prates USA, 28, 167–173.

    Google Scholar 

  • Butzer, K. W. (1967). Late Pleistocene deposits of the Kom Ombo Plain, Upper Egypt. In: Gripp, Schwabedissen (Eds.), Frühe Menschheit und Umwelt. Teil II: Naturwissenschaftliche Beiträge (pp. 213–227). BöhlauVerlag.

    Google Scholar 

  • CEDARE. (2002). Regional strategy for the utilization of the Nubian sandstone aquifer system. Center for the Environment and Development for the Arab Region and Europe, Cairo, Egypt, pp. 22–82.

    Google Scholar 

  • CEDARE. (2014). Nubian sandstone aquifer system (NSAS) M&E rapid assessment report; Monitoring & evaluation for water in North Africa (MEWINA) project, water RESOURCES management program. CEDARE, Cairo Governorate, Egypt, p. 95.

    Google Scholar 

  • CONOCO. (1987). Geological map of Egypt. Scale 1:500,000. Egyptian General Petroleum Corporation.

    Google Scholar 

  • Dahab, K. (1994). Hydrogeological evolution of the Nile Delta aquifer after construction of Aswan High Dam, Egypt. Ph.D. thesis, Geol. Depart. Menoufia University, Egypt. p. 194.

    Google Scholar 

  • Dames & Moore. (1985). Sinai development study phase 1 final report (Vol. V). Cairo, Egypt: Water supplies and coasts, Ministry of Development.

    Google Scholar 

  • Diab, M. S., Dahab, K. A., & El-Fakharany, M. A. (1997). Impact of paleo-hydrogeological conditions on the groundwater quality in the northern part of the Nile Delta, Egypt. Egyptian Journal of Geology, 41(2B), 779–796.

    Google Scholar 

  • E1-Asmar, H. M. (1991). Old shorelines of the Mediterranean coastal zone of Egypt in relation with sea-level changes. Ph.D. thesis, Faculty of Science, El Mansoura University, Egypt, p. 219.

    Google Scholar 

  • EI-Ramly, I. (1967). Contribution to the hydrogeological study of limestone terrains in UAR. In Actes du Colloques de Dubrovnik, Octobre 1965, Hydrologie des Roches Fissures (Vol 1, Publ. No. 73), AIRS—UNESCO.

    Google Scholar 

  • El Alfy, M. (2014). Numerical groundwater modeling as an effective tool for management of water resources in arid areas. Hydrological Sciences Journal, 59(6), 1259–1274. https://doi.org/10.1080/02626667.2013.836278

    Article  Google Scholar 

  • El Tahlawi, M., Farrag, A., & Ahmed, S. (2008). Groundwater of Egypt: “An environmental overview’’. Environmental Geology, 55(3), 639–652.

    Article  Google Scholar 

  • El‐Fayoumi, I. F. (1987). Geology of the quaternary succession and its impact on the groundwater reservoir in the Nile Delta region. Bulletin of the Faculty of Science, Mansoura University, Egypt.

    Google Scholar 

  • El-Rawy, M., Abdalla, F., & El Alfy, M. (2020). Water resources in Egypt. In Z. Hamimi, A. El-Barkooky, J. MartínezFrías, H. Fritz, & Y. Abd El-Rahman (Eds.), The geology of Egypt. Regional geology reviews (pp. 687–711). Springer Nature.

    Google Scholar 

  • El-Rayes, A. E., Arnous, M. O., & Aziz, A. M. (2017). Morphotectonic controls of groundwater flow regime and relating environmental impacts in Northwest Sinai, Egypt. Arabian Journal of Geosciences, 10, 401. https://doi.org/10.1007/s12517-017-3188-5

    Article  Google Scholar 

  • El-Rayes, A. E. (1992). Hydrogeological studies of Saint Katherine Area, South Sinai, Egypt (Master’s thesis, Suez Canal University, Ismailia, Egypt), p. 95.

    Google Scholar 

  • El-Sayed, S. A., & Morsy, S. M. (2018). Hydrogeological assessment of Moghra aquifer, North Western Desert, Egypt. Annals of the Geological Survey of Egypt, XXXV, 110–130.

    Google Scholar 

  • Fairbanks, R. O. (1989). A 17000-year glacioeustatic sea-level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342, 637–642.

    Article  Google Scholar 

  • Fairbridge, R. W. (1967). Global climate change during the 13,500 B. P. Gothenburg geomagnetic excursion. Nature, 265, 430–431.

    Article  Google Scholar 

  • FAO. (2016). Egypt, regional report. AQUASTAT website, Food and Agricultural Organization of the United Nations.

    Google Scholar 

  • El Fawal, F. M., & Shendi, E. H. (1991). Sedimentology and groundwater of the quaternary Sandy layer North of Wadi El Tumilat, Ismailia, Egypt. Annals of the Geological Survey of Egypt, XVII, 305–314.

    Google Scholar 

  • El Ghazawi, A., Abdel Baki, A. (1991) Groundwater in Wadi Asel Basin, Eastern Desert, Egypt. Bull of Meneufia Uni V:25–44

    Google Scholar 

  • Frenken, K. E. (2005). Irrigation in Africa in figures: AQUASTAT Survey. p. 29.

    Google Scholar 

  • Geirnaert, W., & Laeven, M. P. (1992). Composition and history of groundwater in the western Nile Delta. Journal of Hydrology, 138, 169–189.

    Article  Google Scholar 

  • Geriesh, M. H. (1998). Hydrogeological assessment of the groundwater resources around the Nile Valley between Qift and Nag-Hammady, Upper Egypt. Al-Azhar Bulletin of Science, 9(1), 307–325.

    Google Scholar 

  • Geriesh, M. H., El-Rayes, A. E., Gom’aa, R. M., Kaiser, M. F., & Mohamed, M. A. (2015a). Geoenvironmental impact assessment of El-salam Canal on the surrounding soil and groundwater flow regime, Northwestern Sinai, Egypt. Catrina, 11(1), 103–115.

    Google Scholar 

  • Geriesh, M. H., Mansour, B. M. H., Gaber, A., & Mamoun, K. (2020). Exploring groundwater resources and recharge potentialities at El-Gallaba Plain area, Western Desert, Egypt. Groundwater, 58(5), 842–855.

    Article  Google Scholar 

  • Geriesh, M. H., & El-Rayes, A. E. (2000). Water quality assessment of Wadi Feiran catchment area, South Sinai, Egypt. In Proceedings of the 5th international water technology conference, Alexandria, Egypt (pp. 139–153).

    Google Scholar 

  • Geriesh, M. H., El-Rayes, A. E., & Ghodeif, K. (2004). Potential sources of groundwater contamination in Rafah environs, North Sinai, Egypt. In Proceedings of the 7th conference of the geology of Sinai for Development, Ismailia (pp. 41–52).

    Google Scholar 

  • Geriesh, M. H., D-Klaus, B., El-Rayes, A., & Mansour, B. (2015). Implications of climate change on the groundwater flow regime and geochemistry of the Nile Delta, Egypt. Journal of Coastal Conservation, 19(4), 589–608.

    Google Scholar 

  • Geriesh, M. H. (2000). Paleohydrogeological regime of groundwater flow in the eastern Nile Delta Region, Egypt. In Proceedings of the 4th international conference on water supply and water quality, Krakow, Poland (pp. 229–241).

    Google Scholar 

  • Geyh, M. A., & Jäkel, D. (1974). Late Glacial and Holocene climatic history of the Sahara Desert derived from a statistical assay of 14C dates. Palaeogeography, Palaeoclimatology, Palaeoecology, 15, 205–208.

    Article  Google Scholar 

  • Ghodeif, K., & Geriesh, M. H. (2003). Contamination of domestic groundwater supplies at El Arish city, North Sinai, Egypt. In 3rd International conference of geology of Africa, Assuit University, Egypt. December 2003.

    Google Scholar 

  • Ginzburg, A., Makris, J., Fuches, K., Prodehl, C., Kaminsky, W., & Amitai, U. (1979). A seismic study of the crust and upper mantle of the Jordan-Dead Sea rift and their transition toward the Mediterranean Sea. Journal of Geophysical Research, 84, 1569–1582.

    Article  Google Scholar 

  • Hamza, M. S., Swallem, F., & Abdel-Monem, A. (1982). Groundwater hydrology of Wadi El-Natrun. III. Distribution of radium and deuterium contents. Applied Radiation and Isotopes, 14, 9.

    Google Scholar 

  • Hefny, K., & Shata, A. (2004). Underground water in Egypt. Ministry of water supplies and irrigation, Cairo, Egypt, p. 295 (in Arabic).

    Google Scholar 

  • Heinl, M., & Thorweihe, U. (1993). Groundwater resources and management in SW Egypt. In B. Meissner, P. Wycisk (Eds.), Geopotential and ecology: Analysis of a desert region (pp. 99–122) Catena Suppl. 26.

    Google Scholar 

  • Hesse, K. H., Hissene, A., Kheir, O., Schnaecker, E., Schneider, M., & Thorweihe, U. (1987). Hydrogeological investigations of the Nubian aquifer system. Eastern Sahara. Berliner Geowiss. Abh. (a), 75, 397–464.

    Google Scholar 

  • Houben, G. J., Stoeckl, L., Mariner, K. E., & Choudhury, A. S. (2018). The influence of heterogeneity on coastal groundwater flow—Physical and numerical modeling of fringing reefs, dykes, and structured conductivity fields. Advances in Water Resources, 113, 155–166.

    Article  Google Scholar 

  • Idris, H., & Nour, S. (1990). Present groundwater status in Egypt and the environmental impacts. Environmental Geology and Water Sciences, 16, 171–177.

    Article  Google Scholar 

  • Il Nouva Castoro Co. (1986). Techno-economical feasibility study for the reclamation of 50,000 feddans in Farafra Oasis, Part 1—Geohydrogeology: Unpublished report to the General Authority for Land Reclamation, Cairo.

    Google Scholar 

  • JICA. (1992). Basic study on North Sinai groundwater resources development study. Cairo University.

    Google Scholar 

  • Joint Venture Qattara. (1979). Study Qattara depression (Vol. III), Part 1 Topography, regional geology, and hydrogeology. Lahmeyer International, Salzgitter Consult and Deutsche Project, Union GmbH, German Federal Republic.

    Google Scholar 

  • Khaled, M., & Abdalla, F. (2013). Hydrogeophysical study for additional groundwater supplies in El Heiz Area, Southern part of El Bahariya Oasis, Western Desert, Egypt. Arabian Journal of Geosciences, 6, 761–774.

    Article  Google Scholar 

  • Khalifa, E. A. (2014). Sustainable groundwater management in El-Moghra aquifer. International Journal of Engineering Research and Technology, 7(2), 131–144.

    Google Scholar 

  • Koch, M., Gaber, A., Burkholder, B., & Geriesh, M. H. (2012). Development of new water resources in Egypt with earth observation data: Opportunities and challenges. International Journal of Environment and Sustainability, 1(3), 1–11.

    Article  Google Scholar 

  • Korany, E. (1995). Hydrogeologic evaluation of the deeper aquifer in Bahariya mines area, Egypt. In Symposium of Nubia sandstone rocks (pp. 1–38). Benghazi, Libya.

    Google Scholar 

  • Mansour, B. M. H. (2015). Climatic and human impacts on the hydrogeological regime of East Nile Delta, Egypt. Ph.D. Dissertation, Suez Canal University.

    Google Scholar 

  • Masoud, M. H., Schneider, M., & El Osta, M. M. (2013). Recharge flux to the Nubian sandstone aquifer and its impact on the present development in Southwest Egypt. Journal of African Earth Sciences, 85(1), 115–124.

    Article  Google Scholar 

  • Mirghani, M. (2012). Groundwater need assessment: Nubian sandstone Basin. Rio de Janeiro, Brazil: WATERTRAC—Nile IWRM–NET.

    Google Scholar 

  • Mohamed, M. M., & El-Mahdy, S. I. (2017). Remote sensing of the grand Ethiopian Renaissance Dam: A hazard and environmental impacts assessment. Geomatics, Natural Hazards, and Risk, 8(2), 1225–1240. https://doi.org/10.1080/19475705.2017.1309463

    Article  Google Scholar 

  • Mohamed, L., Sultan, M., Ahmed, M., Zaki, A., Sauck, W., Soliman, F., Yan, E., Elkadiri, R., & Abouelmagd, A. (2015). Structural controls on groundwater flow in basement terrains: Geophysical, remote sensing, and field investigations in Sinai. Surveys in Geophysics. https://doi.org/10.1007/s10712-015-9331-5

    Article  Google Scholar 

  • MWRI. (2013). NWRP measures. National water resources plan, coordination project (NWRP-CP). Technical Report 44. Ministry of Water Resources and Irrigation—Planning Sector.

    Google Scholar 

  • Neev, D. (1975). Tectonic evolution of the Middle East and Levantine basin (easternmost Mediterranean). Geology, 3, 683–686.

    Article  Google Scholar 

  • Paepe, R., & Mariolakos, I. (1984). Paleoclimatic reconstruction in Belgium and Greece based on quaternary lithostratigraphic sequences. In Proceedings of E. C. climatology Sophia Antipolis, France (pp. 1–18).

    Google Scholar 

  • Paulissen, E., & Vermeersch, P. M. (1987). Earth, man and climate in the Egyptian Nile Valley during the Pleistocene. In A. E. Close (Ed.), Prehistory of Arid North Africa (pp. 29–67). Southern Methodist University Press.

    Google Scholar 

  • Perissorateis, C., & Conispoliatis, N. (2003). The impacts of sea-level changes during the latest Pleistocene and Holocene times on the morphology of the Ionian and Aegean seas (SE Alpine Europe). International Journal of Marine Geology, 196, 145–156.

    Article  Google Scholar 

  • RIGW. (1990). Hydrogeological inventory and groundwater development plan, western Nile Delta region (Vol. 1). Research Institute for Groundwater, Main report, TN 70–130–90–02, RIGW, Cairo.

    Google Scholar 

  • RIGW. (1991). Hydrogeological map of Egypt-Burg El-Arab, scale 1:100,000. Research Institute for Groundwater, Cairo, Egypt.

    Google Scholar 

  • RIGW/IWACO. (1988). Hydrogeological mapping of Egypt; scale 1:2,000,000.

    Google Scholar 

  • RIWR. (1995). Sinai water resources study. Final report, A.R.E., Research Institute of Water Resources, Ministry of Public Works and Water Resources.

    Google Scholar 

  • Rizzini, A., Vezzani, F., Cococcetta, V., & Milad, G. (1978). Stratigraphy and sedimentation of a Neogene-quaternary section in the Nile Delta area. Marine Geology, 27(3–4), 327–348.

    Article  Google Scholar 

  • Robinson, C. A., Werwer, A., El-Baz, F., El-Shazly, M., Fritch, T., & Kusky, T. (2007). The Nubian aquifer in Southwest Egypt. Hydrogeology Journal, 15, 33–45.

    Article  Google Scholar 

  • Rognon, P. (1987). Late quaternary climatic reconstruction for the Maghreb (North Africa). Palaeogeography, Palaeoclimatology, Palaeoecology, 58, 11–34.

    Article  Google Scholar 

  • Rognon, P., & Williams, M. A. J. (1977). Late quaternary climatic changes in Australia and North Africa: A preliminary interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology, 21, 285–327.

    Article  Google Scholar 

  • Said, R. (1981). The geological evolution of the river Nile (p. 151). Springer.

    Book  Google Scholar 

  • Salah, A. E., & Samah, M. M. (2018). Hydrogeological assessment of Moghra aquifer, North Western Desert, Egypt. Annals of the Geological Survey of Egypt, V. XXXV, 110–130.

    Google Scholar 

  • Salem, O. M., & Pallas, P. (2002). The Nubian Sandstone aquifer system. In B. Appelgren (Ed.), (2004). Managing shared aquifer resources in Africa. ISARM-AFRICA. Proceedings of the international workshop, Tripoli, Libya, 2–4 June 2002. IHP-VI, Series on Groundwater No. 8. UNESCO, Paris.

    Google Scholar 

  • Sefelnasr, A., Gossel, W., & Wycisk, P. (2015). Groundwater management options in an arid environment: The Nubian Sandstone aquifer system, Eastern Sahara. Journal of Arid Environments, 122, 46–58.

    Article  Google Scholar 

  • Sefelnasr, A. M. (2002). Hydrogeological studies on some areas on the new Valley governorate, Western Desert, Egypt. MSc thesis, Assiut University.

    Google Scholar 

  • Sestini, G. (1989). Nile Delta: A review of depositional environments and geological history. Geological Society, 41, 99–127 (Special Publications). https://doi.org/10.1144/GSL.SP.1989.041.01.09

  • Shackleton, N., & Opdyke, N. (1977). Oxygen isotope and palaeomagnetic evidence for early Northern Hemisphere glaciation. Nature, 270, 216–219.

    Article  Google Scholar 

  • Shata, A., & El Fayoumy, I. F. (1970). Remarks on the hydrogeology of the Nile Delta. In Proceedings of the symposium on hydrogeology of Deltas, UNESCO v. II.

    Google Scholar 

  • El Shazly, E. M., Abd El Hady, M. A., El Shazly, M. M., El Kassas, I. A., El Ghawaby, M. A., Salman, A. B., Morsi, M. A. (1975). Geology and groundwater potential studies of El Ismailia master plan study area. Remote Sensing Research Project, Academy of Scientific Research and Technology, Cairo, Egypt.

    Google Scholar 

  • Shendi, E., & Abouelmagd, A. (2004). New approach for ground geophysics in the development of groundwater in the basement terrains (A case study from South Sinai, Egypt). In Proceedings of the 7th conference geology of Sinai for development, Ismailia, Egypt (pp 129–140).

    Google Scholar 

  • Shepard, F. P. (1963). Submarine geology (p. 557). Harper & Row.

    Google Scholar 

  • Sherif, M. I., & Sturchio, N. C. (2021). Elevated radium levels in Nubian Aquifer groundwater of Northeastern Africa. Science and Reports, 11, 1–12. https://doi.org/10.1038/s41598-020-80160-0

    Article  Google Scholar 

  • Sherif, M. I., Lin, J., Poghosyan, A., Abouelmagd, A., Sultan, M. I., & Sturchio, N. C. (2018). Geological and hydrogeochemical controls on radium isotopes in groundwater of the Sinai Peninsula, Egypt. Science of the Total Environment, 613–614, 877–885.

    Article  Google Scholar 

  • Stanley, D., & Maldonado, A. (1977). Nile Cone: Late quaternary stratigraphy and sediment dispersal. Nature, 266, 129–135.

    Article  Google Scholar 

  • Stanley, D., & Warne, A. (1998). Nile Delta in its destruction phase. Journal of Coastal Research, 14(3), 795–825.

    Google Scholar 

  • Sturchio, N. C., Du, X., Purtschert, R., Lehmann, B. E., Sultan, M., Patterson, L. J., Lu, Z. T., Müller, P., Bigler, T., Bailey, K., O’Connor, T. P., Young, L., Lorenzo, R., Becker, R., El Alfy, Z., El Kaliouby, B., Dawood, Y., & Abdallah, A. M. A. (2004). One million-year-old groundwater in the Sahara revealed by krypton-81 and chlorine-36. Geophysical Research Letters, 31, 2–5.

    Article  Google Scholar 

  • Sultan, M., Ahmed, M., Sturchio, N., Eugene, Y., Milewski, A., Becker, R., Wahr, J., Becker, D., & Chouinard, K. (2013). Assessment of the vulnerabilities of the Nubian sandstone fossil aquifer, North Africa. In R. A. Pielke (Ed.), Climate vulnerability: Understanding and addressing threats to essential resources (pp. 311–333). Elsevier Inc.

    Google Scholar 

  • Swailem, F. M., Hamza, M. S., & Aly, A. I. M. (1983). Isotopic composition of groundwater in Kufra, Libya. Water Resources Development, 1, 331–341.

    Article  Google Scholar 

  • Thorweihe, U., & Heinl, M. (2002). Groundwater resources of the Nubian aquifer system, NE-Africa. Modified synthesis submitted to Observatoire du Sahara et du Sahel. OSS, Paris, p. 23.

    Google Scholar 

  • Thorweihe, U. (1982). Hydrogeologie des Dakhla Beckens (Ägypten) (Vol. 38, pp. 1–58). Berliner geowiss. Abh.

    Google Scholar 

  • Thorweihe, U. (1990). Nubian aquifer system. In: R. Said (Ed.), Geology of Egypt (pp. 601–611). Balkema.

    Google Scholar 

  • Van Overlop. (1984). Desertification cycles in historical Greece. In Symposium on interactions between climate and biosphere, March 21–23, 1983, Osnabruck, West Germany.

    Google Scholar 

  • Wendorf, F., & Expedition, T.M. of the C.P. (1977). Late Pleistocene and recent climatic changes in the Egyptian Sahara. Geographical Journal, 143, 211–234.

    Google Scholar 

  • Youssef, M. I. (1968). Structural pattern of Egypt and its interpretation. AAPG Bulletin, 52, 601–614.

    Google Scholar 

  • Youssef, T. (2012). Assessment of groundwater resources management in WadiEl-Farigh area using MODFLOW. IOSR Journal of Engineering, 02, 69–78. https://doi.org/10.9790/3021-021016978

    Article  Google Scholar 

  • Zaghloul, Z. M., Taha, H. H., Hegab, O. A., & El Fawal, F. M. (1979). The Plio-Pliostocene Nile Delta sub-environments; stratigraphic section and genetic class (Vol. 1X). Geological Society, Cairo.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed H. Geriesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Geriesh, M.H., Abouelmagd, A., Mansour, B.M.H. (2023). Major Groundwater Reservoirs of Egypt. In: Hamimi, Z., et al. The Phanerozoic Geology and Natural Resources of Egypt. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-95637-0_21

Download citation

Publish with us

Policies and ethics