Skip to main content

Climatic and Environmental Changes During Paleocene-Eocene Thermal Maximum in Egypt: An Overview

  • Chapter
  • First Online:
The Phanerozoic Geology and Natural Resources of Egypt

Abstract

During the last decades, Egypt became a focal point for studying the climate and paleoenvironmental changes during the late Paleocene early of Eocene that is known as the Paleocene-Eocene Thermal Maximum (PETM). This chapter sheds light on the climatic and paleoenvironmental changes recorded from the Egyptian sedimentary record, based on: biostratigraphy, sedimentology, and geochemistry. We also introduce a complete raw data set of Dababiya Global Stratigraphic Section and Point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agnini, C., Fornaciari, E., Rio, D., Tateo, F., Backman, J., & Giusberti, L. (2007). Responses of calcareous nannofossil assemblages, mineralogy and geochemistry to the environmental perturbations across the Paleocene/Eocene boundary in the Venetian Pre-Alps. Marine Micropaleontology, 63, 19–38.

    Article  Google Scholar 

  • Algeo, T. J., & Ingall, E. (2007). Sedimentary Corg: P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3), 130–155. https://doi.org/10.1016/j.palaeo.02.029

    Article  Google Scholar 

  • Algeo, T. J., Kuwahara, K., Sano, H., Bates, S., Lyons, T., Elswick, E., Hinnov, L., Ellwood, B., Moser, J., & Maynard, J. B. (2011). Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 308, 65–83.

    Article  Google Scholar 

  • Algeo, T. J., & Maynard, J. B. (2004). Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206, 289–318.

    Article  Google Scholar 

  • Aubry, M.-P., Ouda, K., Dupuis, C., Berggren, W. A., Van Couvering, J. A., & The Members of the Working Group on the Paleocene/Eocene Boundary. (2007). Global Standard Stratotype-Section and Point (GSSP) for the base of the Eocene series in the Dababiya section (Egypt). Episodes, 30(4), 271–286.

    Google Scholar 

  • Aubry, M. P., & Salem, R. (2013). The Dababiya core: A window into Palaeocene to early Eocene depositional history in Egypt based on coccolith stratigraphy. Stratigraphy, 9(3–4), 287–346

    Google Scholar 

  • Aziz, H., Kamar, A., & Ariffin, S. (2008). Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: Post treatment by high quality limestone. Bioresource Technology, 99(6), 1578–1583.

    Article  Google Scholar 

  • Bains, S., Norris, R. D., Corfield, R. M., & Faul, K. L. (2000). Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature, 407, 171–174. https://doi.org/10.1038/35025035

  • Bajpai, S., Kay, R. F., Killiams, B. A., Dash, D. P., Kapur, V. V., & Tiwari, B. N. (2008). The oldest Asian record of Anthropoidea. Proceedings of the National Academy of Sciences, USA, 105, 11093–11098.

    Google Scholar 

  • Bau, M., & Dulski, P. (1996). Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, 79, 37–55.

    Article  Google Scholar 

  • Bellanca, A., Masetti, D., & Neri, R. (1997). Rare earth elements in limestone/marlstone couplets from the Albian-Cenomanian Cismon section (Venetian region, northern Italy): Assessing REE sensitivity to environmental changes. Chemical Geology, 141, 141–152.

    Google Scholar 

  • Berggren, W. A., & Ouda, K. (2003). Upper Paleocene–lower Eocene planktonic foraminiferal biostratigraphy of the Dababiya section, Upper Nile Valley (Egypt). In K. Ouda & M.-P. Aubry (Eds.), The Upper Paleocene–Lower Eocene of the Upper Nile Valley: Part 1, stratigraphy. Micropaleontology (Vol. 49, pp. 61–92).

    Google Scholar 

  • Bhatia, M. R. (1985). Rare-Earth element geochemistry of Australian Paleozoic Graywackes and Mudrocks: Provenance and tectonic control. Sedimentary Geology, 45, 97–113. https://doi.org/10.1016/0037-0738(85)90025-9

    Article  Google Scholar 

  • Black, B. A., Perron, J. T., Hemingway, D., Bailey, E., Nimmo, F., & Zebker, H. (2017). Global drainage patterns and the origins of topographic relief on Earth, Mars, and Titan. Science, 356(6339), 727–731. https://doi.org/10.1126/science.aag0171

  • Blakey, R.C., (2007). Carboniferous-Permian paleogeography of the assembly of Pangaea. In: Wong, Th. E (Ed.), Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy. Utrecht, 10–16 August 2003. Royal Dutch Academy of Arts and Sciences, Amsterdam, pp. 443–456.

    Google Scholar 

  • Bolle, M. P., & Adatte, T. (2001). Paleocene-early Eocene climatic evolution in the Tethyan realm: Clay mineral evidence. Clay Minerals, 36, 249–261.

    Article  Google Scholar 

  • Bolle, M. P., Tantawy, A. A., Pardo, A., Adatte, T., Burns, S. J., & Kassab, A. (2000). Climatic and environmental changes documented in the upper Paleocene to lower Eocene of Egypt. Eclogae Geologicae Helvetiae, 93, 33–51.

    Google Scholar 

  • Bowen, G. J., Beerling, D. J., Koch, P. L., Zachos, J. C., & Quattlebaum, T. (2004). A humid climate state during the Paleocene-Eocene thermal maximum. Nature, 432, 495–499.

    Article  Google Scholar 

  • Bowen, G. J., Clyde, W. C., Koch, P. L., Ting, S., Alroy, J., Tsubamoto, T., Wang, Y., & Wang, Y. (2002). Mammalian dispersal at the Paleocene/Eocene boundary. Science, 295, 2062–2065.

    Article  Google Scholar 

  • Bowen, G. J., Koch, P. K., Gingerich, P. D., Norris, R. D., Bains, S., & Corfield, R. M. (2001). Refined isotope stratigraphy across the continental Paleocene-Eocene boundary on Polecat Bench in the Northern Bighorn Basin. In P. D. Gingerich (Ed.), Paleocene–Eocene stratigraphy and biotic change in the bighorn and Clarks Fork Basins, Wyoming (Vol. 33, pp. 73–88). University of Michigan Papers on Paleontology.

    Google Scholar 

  • Bowen, G. J., & Zachos, J. C. (2010). Rapid carbon sequestration at the termination of the Palaeocene-Eocene thermal maximum. Nature Geoscience, 3, 866–869.

    Article  Google Scholar 

  • Bruland, K. W. (1983). Trace elements in sea water. In J. P. Riiey & R. Chester (Eds.), Chemical oceanography (Vol. 8, pp. 157–220). Academic Press.

    Chapter  Google Scholar 

  • Brumsack, H.-J. (2006). The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 344–361.

    Article  Google Scholar 

  • Campbell, I. H., Czamanske, G. K., Fedorenko, V. A., Hill, R. I., & Stepanov, V. (1992). Synchronism of the Siberian traps and the Permian-Triassic boundary. Science, 258, 1760–1763.

    Article  Google Scholar 

  • Cao, J., Yang, R., Yin, W., Hu, G., Bian, L., & Fu, X. (2018a). Mechanism of organic matter accumulation in residual bay environments: The early cretaceous Qiangtang Basin, Tibet. Energy & Fuels, 32, 1024–1037.

    Article  Google Scholar 

  • Cao, W., Xi, D., Melinte-Dobrinescu, M. C., Jiang, T., Wise, S. W. Jr., & Wan, X. (2018b). Calcareous nannofossil changes linked to climate deterioration during the Paleocene-Eocene thermal maximum in Tarim Basin, NW China. Geoscience Frontiers, 9, 1465–1478.

    Article  Google Scholar 

  • Courtillot, V., & Renne, P. R. (2003). On the ages of flood basalt events. Comptes Rendus Géoscience, 335, 113–140.

    Article  Google Scholar 

  • Cruse, A. M., & Lyons, T. W. (2004). Trace metal records of regional paleoenvironmental variability in Pennsylvanian (Upper Carbonaferous) black shales. Chemical Geology, 206(319), 345.

    Google Scholar 

  • Cullers, R. L. (2002). Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chemical Geology, 191, 305–327.

    Article  Google Scholar 

  • DeConto, R. M., Galeotti, S., Pagani, M., Tracy, D., Schaefer, K., Zhang, T., Pollard, D., & Beerling, D. J. (2010). Past extreme warming events linked to massive carbon release from thawing permafrost. Nature, 484, 87–91.

    Google Scholar 

  • Dehairs, F., Chesselet, R., & Jedwab, J. (1980). Discrete suspended particles of barite and the barium cycle in the open ocean. Earth and Planetary Science Letters, 49, 528–550.

    Article  Google Scholar 

  • Dickens, G. R., Castillo, M. M., & Walker, J. C. G. (1997). A blast of gas in the latest Paleocene; Simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology, 25, 259–262.

    Article  Google Scholar 

  • Dickens, G. R., O’Neil, J. R., Rea, D. K., & Owen, R. M. (1995). Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 10(6), 965–971.

    Article  Google Scholar 

  • Dupuis, C., Aubry, M.-P., Steurbaut, E., Berggren, W. A., Ouda, K., Magioncalda, R., Cramer, B. S., Kent, D. V., Speijer, R. P., & Heilmann-Clausen, C. (2003). The Dababiya Quarry section: Lithostratigraphy, clay mineralogy, geochemistry and paleontology. In K. Ouda & M.-P. Aubry (Eds.), The Upper Paleocene–Lower Eocene of the Upper Nile Valley: Part 1. Stratigraphy: Micropaleontology (Vol. 49, pp. 41–59).

    Google Scholar 

  • Dymond, J., Suess, E., & Lyle, M. (1992). Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography, 7, 163–181.

    Article  Google Scholar 

  • Farley, K. A., & Eltgroth, S. F. (2003). An alternative age model for the Paleocene-Eocene thermal maximum using extraterrestrial (super 3) He. Earth and Planet Science Letters, 208, 135–148.

    Article  Google Scholar 

  • Feng, X. L., Fu, X. G., Tan, F. W., & Chen, W. B. (2014). Sedimentary environment characteristics of Upper Carboniferous Cameng Formation in Kongkong Chaka Area of Northern Qiangtang Basin, Tibet. Geoscience, 28, 953–961.

    Google Scholar 

  • Föllmi, K. B. (1996). The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth-Science Reviews, 40, 55–124.

    Article  Google Scholar 

  • Fricke, H. C., Clyde, W. C., O’Neil, J. R., & Gingerich, P. D. (1998). Intra-tooth variation in δ18O of mammalian tooth enamel as a record of seasonal changes in continental climate variables. Geochimica et Cosmochimica Acta, 62, 1839–1851.

    Article  Google Scholar 

  • Fricke, H. C., & Wing, S. L. (2004). Oxygen isotope and paleobotanical estimates of temperature and δ18O-latitude gradients over North America during the early Eocene. American Journal of Science, 304, 612– 635. https://doi.org/10.2475/ajs.304.7.612

  • Fu, X., Wang, J., Chen, W., Feng, X., Wang, D., Song, C., & Zeng, S. (2016). Elemental geochemistry of the early Jurassic black shales in the Qiangtang Basin, eastern Tethys: Constraints for palaeoenvironment conditions. Geological Journal, 2016(51), 443–454.

    Article  Google Scholar 

  • German, C. R., & Elderfield, H. (1990). Application of Ce anomaly as a paleoredox indicator: The ground rules. Paleoceanography, 5, 823–833.

    Google Scholar 

  • Ghandour. (2020). Paleoenvironmental changes across the Paleocene–Eocene boundary in West Central Sinai, Egypt: Geochemical proxies. Swiss Journal of Geosciences, 113, 3. https://doi.org/10.1186/s00015-020-00357-3

  • Goldhammer, T., Brüchert, V., Ferdelman, T. G., & Zabel, M. (2010). Microbial sequestration of phosphorus in anoxic upwelling sediments. Nature Geoscience, 3, 557–561.

    Article  Google Scholar 

  • Guasti, E., & Speijer, R. P. (2007). The Paleocene-Eocene Thermal Maximum in Egypt and Jordan: An overview of the planktic foraminiferal record. Special Paper of the Geological Society of America, 424, 53–67. https://doi.org/10.1130/2007.2424(03)

    Article  Google Scholar 

  • Guiraud, R., & Bosworth, W. (1999). Phanerozoic geodynamic evolution of north-eastern Africa and the northwestern Arabian platform. Tectonophysics, 315, 73–108.

    Article  Google Scholar 

  • Harnois, L. (1988). The CIW index: A new chemical index of weathering. Sedimentary Geology, 55, 319–322.

    Article  Google Scholar 

  • Higgins, J. A., & Schrag, D. P. (2006). Beyond methane: Towards a theory for the Paleocene-Eocene thermal maximum. Earth Planetary and Science Letter, 245, 523–537.

    Article  Google Scholar 

  • Hirschmann, G., Duyster, J., Harms, U., Kontny, A., Lapp, M., de Wall, H., & Zulauf, G. (1997). The KTB superdeep borehole: Petrography and structure of a 9-km-deep crustal section. Geologische Rundschau, 86, 3–14.

    Article  Google Scholar 

  • Holser, W. T. (1997). Geochemical events documented in inorganic carbon isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 132, 173–182.

    Article  Google Scholar 

  • Höntzsch, S., Scheibner, C., Kuss, J., Marzouk, A., & Rasser, M. (2011). Tectonically driven carbonate ramp evolution at the southern Tethyan shelf-the Lower Eocene succession of the Galala Mountains, Egypt. Facies, 57, 51–72.

    Article  Google Scholar 

  • Hu, J., Li, Q., Li, J., Huang, J., & Ge, D. (2016). Geochemical characteristics and depositional environment of the Middle Permian mudstones from central Qiangtang Basin, northern Tibet. Geological Journal, 51, 560–571.

    Article  Google Scholar 

  • Huber, M. (2008). A hotter greenhouse? Science, 321, 353–354.

    Article  Google Scholar 

  • Ingall, E., Kolowith, L., Lyons, T., & Hurtgen, M. (2005). Sediment carbon, nitrogen and phosphorus cycling in an anoxic fjord, Engham Inlet, British Columbia. American Journal of Science, 305, 240–258.

    Article  Google Scholar 

  • Jaramillo, C., Ochoa, D., Contreras, L., Pagani, M., Carvajal-Ortiz, H., Pratt, L. M., Krishnan, S., Cardona, A., Romero, M., Quiroz, L., & Rodriguez, G. (2010). Effects of rapid global warming at the Paleocene-Eocene boundary on neotropical vegetation. Science, 330, 957. https://doi.org/10.1126/science.1193833

  • Jarvis, I., Burnett, W. C., Nathan, Y., Almbaydin, F. S., Attia, A. K., Castro, L. N., Flicoteaux, R., Hilmy, M. E., Husain, V., Qutawnah, A. A., & Serjani, A. (1994). Phosphorite geochemistry: State of the art and environmental concerns. Eclogae Geologicae Helvetiae, 87, 643–700.

    Google Scholar 

  • Jenkyns, H. C. (2010). Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems, 11. https://doi.org/10.1029/2009GC002788(Q03004).

  • Joachimski, M. M., Ostertag-Henning, C., Pancost, R. D., Strauss, H., Freeman, K. H., Littke, R., Sinninghe Damsté, J. S., & Racki, G. (2001). Water column anoxia, enhanced productivity and concomitant changes in δ13C and δ34S across the Frasnian–Famennian boundary (Kowala Holy Cross Mountains/Poland). Chemical Geology, 175, 109–131.

    Article  Google Scholar 

  • Jones, D. S., Martini, A. M., Fike, D. A., & Kaiho, K. (2017a). A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia. Geology, 45(7), 631–634.

    Article  Google Scholar 

  • Jones, M. T., Augland, L. E., Shephard, G. E., Burgess, S. D., Eliassen, G. T., Jochmann, M., Friis, B., Jerram, D. A., Planke, S., & Svensen, H. H. (2017b). Constraining shifts in North Atlantic plate motions during the Palaeocene by U-Pb dating of Svalbard tephra layers. Nature Scientific Reports, 7, 6822. https://doi.org/10.1038/s41598-017-06170-7

    Article  Google Scholar 

  • Jones, M. T., Percival, L. M. E., Stokke, E. W., Frieling, J., Mather, T. A., Riber, L., Schubert, B. A., Schultz, B., Tegner, C., Planke, S., & Svensen, H. H. (2019). Mercury anomalies across the Palaeocene-Eocene thermal maximum. Climate of the Past, 15, 217–236. https://doi.org/10.5194/cp-15-217-2019

    Article  Google Scholar 

  • Kaiho, K., Takeda, K., Petrizzo, M. R., & Zachos, J. C. (2006). Anomalous shifts in tropical Pacific planktonic and benthic foraminiferal test size during the Paleocene-Eocene thermal maximum. Palaeogeography, Palaeoclimatology, Palaeoecology, 237, 456–464. https://doi.org/10.1016/j.palaeo.2005.12.017

    Article  Google Scholar 

  • Kamber, B. S., & Webb, G. E. (2001). The geochemistry of late Archaean microbial carbonate: Implications for ocean chemistry and continental erosion history. Geochimica et Cosmochimica Acta, 65(15), 2509–2525. https://doi.org/10.1016/S0016-7037(01)00613-5

  • Katz, M. E., Katz, D. R., Wright, J. D., Miller, K. G., Pak, D. K., Shackleton, N. J., & Thomas, E. (2003). Early Cenozoic benthic foraminiferal isotopes. Species reliability and interspecies correction factors. Paleoceanography, 18(2), 1024.

    Google Scholar 

  • Katz, M. E., Pak, D. K., Dickens, G. R., & Miller, K. G. (1999). The source and fate of massive carbon input during the Latest Paleocene thermal maximum. Science, 286, 1531–1533.

    Article  Google Scholar 

  • Keller, G., Mateo, P., Punekar, J., Khozyem, H., Gertsch, B., Spangenberg, J., Bitchong. A., Adatte, T. (2018). Environmental changes during the Cretaceous-Paleogene mass extinction and Paleocene-Eocene thermal maximum: Implications for the Anthropocene. Gondwana Research. https://doi.org/10.1016/j.gr.2017.12.002.

  • Kelly, D. C., Bralower, T. J., Zachos, J. C., Premoli Silva, I., & Thomas, E. (1996). Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP Site 865) during the late Paleocene thermal maximum. Geology, 24, 423–426.

    Article  Google Scholar 

  • Kelly, D. C., Zachos, J. C., Bralower, T. J., Stephen A., & Schellenberg, S. A. (2005). Enhanced terrestrial weathering/runoff and surface ocean carbonate production during the recovery stages of the Paleocene-Eocene thermal maximum. Paleoceanography, 20, 4023. https://doi.org/10.1029/2005PA001163

  • Kennett, J. P., & Stott, L. (1990). Proteus and Proto-Oceanus: Paleogene Ocean as revealed from Antarctica stable isotopic results. Proceeding of ODP Scientific Results, 113, 865–879.

    Google Scholar 

  • Kennett, J. P., & Stott, L. D. (1991). Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature, 353, 225–229.

    Google Scholar 

  • Khozyem, H. (2020). An overview of paleo-climatic evidences in Egypt. In E. S. E. Omran & A. M. Negm (Eds.), Climate change impact on agriculture and food security in Egypt. Springer Water. https://doi.org/10.1007/978-3-030-41629-4-2

  • Khozyem, H., Adatte, T., Keller, G., & Spangenberg, J. E. (2021). Organic carbon isotope records of the Paleocene-Eocene thermal maximum event in India provide new insights into mammal origination and migration. Journal of Asian Earth Sciences, 212, 104736. https://doi.org/10.1016/j.jseaes.2021.104736

    Article  Google Scholar 

  • Khozyem, H., Adatte, T., Keller, G., Tantawy, A. A., & Spangenberg, J. E. (2014). The Paleocene-Eocene GSSP at Dababiya, Egypt-revisited. Episodes 37(2), 78–86.

    Google Scholar 

  • Khozyem, H., Adatte, T., Mbabi Bitchong, A., Mahmoud, A., & Keller, G. (2017). The role of volcanism (North Atlantic Igneous province) in the PETM events revealed by Mercury anomalies. GSA Geological Society of America Abstracts with Programs, 49(6).

    Google Scholar 

  • Khozyem, H., Adatte, T., Spangenberg, J. E., Tantawy, A. A., & Keller, G. (2013). Paleoenvironmental and climatic changes during the Paleocene-Eocene Thermal Maximum (PETM) at the Wadi Nukhul Section, Sinai, Egypt. Journal of the Geological Society of London, 170, 341–352. https://doi.org/10.1144/jgs2012-046

    Article  Google Scholar 

  • Khozyem, H., Adatte, T., Spangenberg, J. E., Keller, G., Tantawy, A. A., & Ulianov, A. (2015). New geochemical constraints on the Paleocene-Eocene thermal maximum: Dababiya GSSP, Egypt. Palaeogeography, Palaeoclimatology, Palaeoecology, 429, 117–135. https://doi.org/10.1016/j.palaeo.2015.04.003

    Article  Google Scholar 

  • Klootwijk, C. T., Gee, J. S., Peirce, J. W., Smith, G. M., & McFadden, P. L. (1992). An early India Asia contact: Paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121. Geology, 20, 395–398.

    Article  Google Scholar 

  • Koch, D., Park, J., & DelGenio, A. (2003). Clouds and sulfate are anticorrelated: A new diagnostic for global sulfur models. Journal of Geophysical Research, 108(D24), 4781. https://doi.org/10.1029/2003JD003621

    Article  Google Scholar 

  • Kraal, P. (2011). Redox-dependent phosphorus burial in modern and ancient marine sediments. In Geologica ultraiectina. Faculteit Geowetenschappen, Departement Aardwetenschappen: Utrecht, The Netherlands.

    Google Scholar 

  • Krause, D. W., & Maas, M. C. (1990). The biogeographic origines of late Paleocene-early Eocene mammalian immigrants to the Western Interior of North America. Geological Society of America Bulletin. Special Paper, 243, 71–105.

    Article  Google Scholar 

  • Kurtz, A. C., Kump, L. R., Arthur, M. A., Zachos, J. C., & Paytan, A. (2003). Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography, 18, 1090. https://doi.org/10.1029/2003PA000908

  • Kvenvolden, K. A. (1993). A primer on gas hydrates. In The future of energy gases. U.S. geological survey professional paper (Vol. 1570, pp. 279–1008).

    Google Scholar 

  • Landing, W. M., & Bruland, K. W. (1980). Manganese in the North Pacific. Earth and Planetary Science Letters, 49(1), 45–56.

    Article  Google Scholar 

  • Landing, W. M., & Bruland, K. W. (1987). The contrasting biogeochemistry of iron and manganese in the Pacific Ocean. Geochimica et Cosmochimica Acta, 51, 29–43.

    Article  Google Scholar 

  • Lawrence, M. G., & Kamber, B. S. (2006). The behavior of the rare earth elements during estuarine mixing–revisited. Marine Chemistry, 100, 147–161. https://doi.org/10.1016/J.MARCHEM.2005.11.007

    Article  Google Scholar 

  • Lu, G., Adatte, T., Keller, G., & Ortiz, N. (1998). An abrupt climatic, oceanographic and ecologic changes near the Paleocene-Eocene transition in deep Tethyan basin: The Alamedilla section, southern Spain. Ecologae Geologica Helvatica, 91, 293–306.

    Google Scholar 

  • Lu, G., & Keller, G. (1993). Climatic and oceanographic events across the Paleocene-Eocene Transition in the Antarctic Indian Ocean: Inference from planktic foraminifera. Marine Micropaleontology, 21, 101–142.

    Article  Google Scholar 

  • Lu, G., & Keller, G. (1995). Planktic foraminiferal faunal turnovers in the subtropical Pacific during the late Paleocene to early Eocene. Journal of Foraminiferal Research, 25, 97–116.

    Google Scholar 

  • Lu, G. Y., Keller, G., Adatte, T., Ortiz, N., & Molina, E. (1996). Long-term (10(5)) or short-term (10(3)) δ13C excursion near the Palaeocene-Eocene transition: Evidence from the Tethys. Terra Nova, 8, 347–355.

    Article  Google Scholar 

  • Lucas, J., & Prevot-Lucas, L. (1995). Tethyan phosphates and bioproductites. In A. E. Nairn (Ed.), The Ocean Basins and margins—The Tethys Ocean (Vol. 8, pp. 367–391). Plenum Press.

    Google Scholar 

  • Luciani, V., Dickens, G. R., Backman, J., Fornaciari, E., Giusberti, L., Agnini, C., & D’Onofrio, R. (2016). Major perturbations in the global carbon cycle and photosymbiont-bearing planktic foraminifera during the early Eocene. Climate of the Past, 12, 981–1007. https://doi.org/10.5194/cp-12-981-2016

  • Luciani, V., Giusberti, L., Agnini, C., Backman, J., Fornaciari, E., & Rio, D. (2007). The Paleocene Eocene thermal maximum as recorded by Tethyan planktonic foraminifera in the Forada section (northern Italy). Marine Micropaleontology, 64, 189–214. https://doi.org/10.1016/j.marmicro.2007.05.001

    Article  Google Scholar 

  • Maclennan, J., & Jones, S. M. (2006). Regional uplift, gas hydrate dissociation and the origins of the Paleocene-Eocene thermal maximum. Earth and Planetary Science Letter, 245, 65–80.

    Google Scholar 

  • McInerney, F. A., & Wing, S. L. (2011). The Paleocene–Eocene thermal maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annual Review in Earth Planetary Science, 39, 489–516.

    Google Scholar 

  • McLennan, S. M. (1989). Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary process. Review of Mineralogy, 21, 169–200.

    Google Scholar 

  • McLennan, S. M. (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2, 1021.

    Article  Google Scholar 

  • Monechi, S., Angori, E., & Speijer, R. P. (2000a). Upper Paleocene biostratigraphy in the Mediterranean region: Zonal markers, diachronism, and preservational problems. GFF. Geologiska Föreningens, Stockholm Förhandligar, 122, 108–110.

    Google Scholar 

  • Monechi, S., Angori, E., & von Salis, K. (2000b). Calcareous nannofossil turnover around the Paleocene/Eocene transition at Alamedilla (southern Spain). Bulletin de la Societe Geologique de France, 171, 477–489.

    Article  Google Scholar 

  • Moore, E. A., & Kurtz, A. C. (2008). Black carbon in Paleocene-Eocene boundary sediments: A test of biomass combustion as the PETM trigger. Palaeogeography, Palaeoclimatology, Palaeoecology, 267(147), 52.

    Google Scholar 

  • Murphy, A. E., Sageman, B. B., Hollander, D. J., Lyons, T. W., & Brett, C. E. (2000). Black shale deposition and faunal overturn in Devonian Appalachian basin: Clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling. Paleoceanography, 15, 280–291.

    Article  Google Scholar 

  • Mutterlose, J., Linnert, C., & Norris, R. (2007). Calcareous nannofossils from the Paleocene Eocene thermal maximum of the equatorial Atlantic (ODP Site 1260B): Evidence for tropical warming. Marine Micropaleontology, 65, 13–31. https://doi.org/10.1016/j.marmicro.2007.05.004

    Article  Google Scholar 

  • Nesbitt, H., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.

    Article  Google Scholar 

  • Nothdurft, L. D., Webb, G. E., & Kamber, B. S. (2004). Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: Confirmation of seawater REE proxy in ancient limestones. Geochimica et Cosmochimica Acta, 68, 263–283.

    Article  Google Scholar 

  • Oberhänsli, H. (1992). The influence of the Tethys on the bottom water of the Early Tertiary ocean. In J. P. Kennett, (Ed.), The Antarctic paleoenvironment: A prospective on global change: Antarctic research service (pp. 167–184).

    Google Scholar 

  • Oberhänsli, H., & Hsü, K. J. (1986). Paleocene–Eocene paleoceanography. In K. J. Hsü (Ed.), Mesozoic and cenozoic oceans. American geophysical union geodynamics series (Vol. pp. 85–100).

    Google Scholar 

  • Olsson, R. K., Hemleben, C., Berggren, W. A., & Huber, B. T. (1999). Atlas of Paleocene planktonic foraminifera. Smithsonian Contributions to Paleobiology, 85(I–V), 1–252.

    Google Scholar 

  • Ouda, K., & Berggren, W. A. (2003). Biostratigraphic correlation of the Upper Paleocene Lower Eocene succession in the Upper Nile Valley: A synthesis. Micropaleontology, 49, 179–212.

    Google Scholar 

  • Pearson, P. N., Olsson, R. K., Huber, B. T., Hemleben, C., & Berggren, W. A. (Eds.). (2006). Atlas of Eocene planktonic foraminifera (pp. 1–513). Cushman Foundation Special Publication.

    Google Scholar 

  • Pujol, F., Berner, Z., & Stueben, D. (2006). Palaeoenvironmental changes at the Frasnian Famennian boundary in key European sections: Chemostratigraphic constraints. Palaeogeography, Palaeoclimatology, Palaeoecology, 240, 120–145.

    Article  Google Scholar 

  • Raffi, I., Backman, J., & Pälike, H. (2005). Changes in calcareous nannofossil assemblage across the Paleocene/Eocene transition from the paleoequatorial Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 226, 93–126.

    Article  Google Scholar 

  • Rana, R. S., Kumar, K., Escarguel, G., Sahni, A., Rose, K. D., Smith, T., Singh, H., & Singh, L. (2008). An ailuravine rodent from the lower Eocene Cambay Formation at Vastan, western India, and its palaeobiogeographic implications. Acta Palaeontologica Polonica, 53, 1–14.

    Article  Google Scholar 

  • Raymo, M. E., & Ruddiman, W. F. (1992). Tectonic forcing of late Cenozoic climate. Nature, 359(6391), 117–122. https://doi.org/10.1038/359117a0

    Article  Google Scholar 

  • Renssen, H., Beets, C. J., Fichefet, T., Goosse, H., & Kroon, D. (2004). Modeling the climate response to a massive methane release from gas hydrates. Paleoceanography. https://doi.org/10.1029/2003PA000968

    Article  Google Scholar 

  • Rimmer, S. M. (2004). Geochemical paleoredox indicators in the Devonian-Mississippian black shales, central Appalachian Basin (USA). Chemical Geology, 206(3–4), 373–391.

    Article  Google Scholar 

  • Riquier, L., Tribovillard, N., Averbuch, O., Devleeschouwer, X., & Riboulleau, A. (2006). The Late Frasnian Kellwasser horizons of the Harz Mountains (Germany): Two oxygendeficient periods resulting from contrasting mechanisms. Chemical Geology, 233, 137–155.

    Article  Google Scholar 

  • Rodríguez, J. (1999). Use of cenograms in mammalian palaeoecology. A critical review. Lethaia, 32, 331–347.

    Article  Google Scholar 

  • Röhl, U., Westerhold, T., Bralower, T. J., Zachos, J. C. (2007). On the duration of the Paleocene-Eocene thermal maximum (PETM). Geochemistry, Geophysics, Geosystems, G3, Q12002.

    Google Scholar 

  • Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone and mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67, 119–139.

    Article  Google Scholar 

  • Roy, D. K., & Roser, B. P. (2013). Climatic control on the composition of Carboniferous-Permian Gondwana sediments, Khalaspir basin, Bangladesh. Gondwana Research, 23, 1163–1171.

    Article  Google Scholar 

  • Said, R. (Ed.). (1990). The geology of Egypt (p. 734p). Balkema.

    Google Scholar 

  • Sanei, H., Grasby, S. E., & Beauchamp, B. (2012). Latest Permian mercury anomalies. Geology, 40(1), 63–66. https://doi.org/10.1130/G32596

  • Schmitz, B., Molina, E., & von Salis, K. (1998). The Zumaya section in Spain: A possible global stratotype section for the Selandian and Thaneitian stages. Newsletters on Stratigraphy, 36, 35–42.

    Article  Google Scholar 

  • Schoepfer, S. D., Shen, J., Wei, H., Tyson, R. V., Ingall, E., & Algeo, T. J. (2015). Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity. Earth Science Reviews, 2015(149), 23–52.

    Article  Google Scholar 

  • Schulte, P., Scheibner, C., & Speijer, R. P. (2011). Fluvial discharge and sea-level changes control-ling black shale deposition during the Paleocene–Eocene thermal maximum in the Dababiya Quarry section. Egypt: Chemical Geology, 285, 167–183.

    Google Scholar 

  • Selverstone, J., & Gutzier, D. S. (1993). Post-125 Ma carbon storage associated with continent-continent collision. Geology, 21, 885–888.

    Article  Google Scholar 

  • Shields, G. A., & Stille, P. (2001). Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites. Chemical Geology, 175, 29–48.

    Article  Google Scholar 

  • Shields, G. A., & Webb, G. E. (2004). Has the REE composition of seawater changed over geological time? Chemical Geology, 204, 103–107.

    Article  Google Scholar 

  • Sigurdsson, H., Leckie, R. M., & Acton, G. (1997). Proceedings of the Ocean Drilling Program, Initial reports (Vol. 165, p. 865). College Station, Texas, Ocean Drilling Program.

    Google Scholar 

  • Sluijs, A., Brinkhuis, H., Crouch, E. M., John, C. M., Handley, L., Munsterman, D., Bohaty, S. M., Zachos, J. C., Reichart, G.-J., Schouten, S., Pancost, R. D., & Sinninghe Damste, J. S. (2008). Eustatic variations in the Paleocene–Eocene greenhouse world. Paleoceanography, 23. https://doi.org/10.1029/2008PA001615 (PA4216).

  • Sluijs, A., & Dickens, G. R. (2012). Assessing offsets between the δ13C of sedimentary components and the global exogenic carbon pool across Early Paleogene carbon cycle perturbations. Global Biogeochemical Cycles, 26 (GB4005).

    Google Scholar 

  • Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Damsté, J. S. S., Dickens, G. R., Huber, M., Reichart, G.-J., Stein, R., Matthiessen, J., Lourens, L. J., Pedentchouk, N., Backman, J., Moran, K., & The Expedition 302 Scientists. (2006). Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature, 441(7093), 610–613. https://doi.org/10.1038/nature04668

  • Soliman, M. F. (2003). Chemostratigraphy of the Paleocene/Eocene (P/E) boundary sediments at Gabal El-Qreiya, Nile Valley, Egypt. Micropaleontology, 49(Suppl-1), 123–138. https://doi.org/10.2113/49.Suppl1.123

  • Soudry, D., Glenn, C. R., Nathan, Y., Segal, I., & VonderHaar, D. (2006). Evolution of Tethyan phosphogenesis along the northern edges of the Arabian-African shield during the Cretaceous-Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation. Earth-Science Reviews, 78(2006), 27–57.

    Article  Google Scholar 

  • Speijer, R. P. (1994). Extinction and recovery patterns in benthic foraminiferal paleocommunilies across the Cretaceous/Paleogene and Paleocene/Eocene boundaries [Ph.D. thesis. University of Utrecht, Netherlands]. Geologica Ultraieciina, 124, 1–191.

    Google Scholar 

  • Speijer, R. P., & Schmitz, B. (1998). A benthic foraminiferal record of Paleocene sea-level changes and trophic conditions at Gebel Aweina, Egypt. Palaeogeography, Palaeoclimatology, Palaeoecology, 137, 79–101.

    Article  Google Scholar 

  • Speijer, R. P., Schmitz, B., & Luger, P. (2000). Stratigraphy of late Palaeocene events in the Middle East: Implications for low to middle-latitude successions and correlations. Journal of the Geological Society of London, 157, 37–47.

    Article  Google Scholar 

  • Speijer, R. P., Schmitz, B., & van der Zwaan, G. J. (1997). Benthic foraminiferal extinction and repopulation in response to latest Paleocene Tethyan anoxia. Geology, 25, 683–686.

    Article  Google Scholar 

  • Speijer, R. P., & Van der Zwaan, G. J. (1994). The differential effect of the P/E boundary event on extinction and survivorship in shallow to deep water Egyptian benthic foraminiferal assemblages. Geologica Ultraiectina, 124, 121–168.

    Google Scholar 

  • Speijer, R. P., Van der Zwaan, G. J., & Schmitz, B. (1996). The impact of Paleocene/Eocene boundary events on middle neritic benthic foraminiferal assemblages from Egypt. Marine Micropaleontology, 28, 99–132.

    Article  Google Scholar 

  • Speijer, R. P., Wagner, T. (2002). Sea-level changes and black shales associated with the late Paleocene thermal maximum: Organic-geochemical and micropaleontologic evidence from the southern Tethyan margin (Egypt–Israel). In C. Koeberl & K. MacLeod (Eds.), Catastrophic events and mass extinctions: Impacts and beyond. Geological Society of America, special papers (Vol. 356, pp. 533–549).

    Google Scholar 

  • Stein, M., Föllmi, K. B., Westermann, S., Godet, A., Adatte, T., Matera, V., Fleitmann, D., & Berner, Z. (2011). Progressive palaeoenvironmental change during the late Barremian–early Aptian as prelude to Oceanic Anoxic Event 1a: Evidence from the Gorgo a Cerbara section (Umbria-Marche basin, central Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 302, 396–406.

    Article  Google Scholar 

  • Stokke, E. W., Morgan, E. W. S., Jessica, T. J., Henrik, E. T., Jessica, H. S., Whitesidec, H. (2020). Temperature changes across the Paleocene-Eocene thermal maximum a new high-resolution TEX86 temperature record from the Eastern North Sea Basin. Earth and Planetary Science Letters, 544, 116388.

    Google Scholar 

  • Storey, M., Duncan, R. A., & Tegner, C. (2007). Timing and duration of volcanism in the North Atlantic Igneous Province: Implications for geodynamics and links to the Iceland hotspot. Chemical Geology, 241(3–4), 264–281.

    Article  Google Scholar 

  • Svensen, H., Planke, S., & Corfu, F. (2010). Zircon dating ties NE Atlantic sill emplacement to initial Eocene global warming. Journal of the Geological Society of London, 167, 433–436.

    Article  Google Scholar 

  • Svensen, H., Planke, S., Malthe-Sorenssen, A., Jamtveit, B., Myklebust, R., Rasmussen Eidem, T., & Rey, S.S. (2004). Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 429, 542–545.

    Google Scholar 

  • Tantawy, A. A. (1998). Stratigraphical and paleoecological studies on some Paleocene-Eocene successions in Egypt [Unpublished Ph.D. thesis]. Faculty of Science, (Aswan), Assiut University, Egypt.

    Google Scholar 

  • Tantawy, A. A. (2006). Calcareous nannofossils of the Paleocene-Eocene transition at Qena Region, Central Nile Valley, Egypt. Micropaleontology, 52(3), 193–222.

    Article  Google Scholar 

  • Tantawy, A. A., Ouda, K., Von Salis, K., & Saad El-Din, M. (2000). Biostratigraphy of Paleocene sections in Egypt. GFF, 122:1, 163–165. https://doi.org/10.1080/11035890001221163

  • Thomas, D. J., Zachos, J. C., Bralower, T. J., Thomas, E., & Bohaty, S. (2002). Warming the fuel for the fire: Evidence for the thermal dissociation of methane hydrate during the Paleocene Eocene thermal maximum. Geology, 30, 1067–1070.

    Article  Google Scholar 

  • Torfstein, A., Winckler, G., & Tripati, A. (2010). Productivity feedback did not terminate the Paleocene–Eocene Thermal Maximum (PETM). Climate of the Past, 6, 265–272.

    Google Scholar 

  • Tremblin, M., Khozyem, H., Adatte, T., Spangenberg, J., Fillon, C., Grauls, A., Hunger, T., Nowak, A., Laeuchli, C., Lasseur, E., Roig, J., Serrano, O., Calassou, S., Guillocheau, F., & Castelltort, S. (2021). Mercury evidence for enhanced volcanism during the Paleocene-Eocene thermal maximum (PETM). Global and Planetary Change (in review).

    Google Scholar 

  • Tribovillard, N., Algeo, J., Lyons, T., & Riboulleau, A. (2006). Trace metals as palaeoredox and palaeoproductivity proxies: An update. Chemical Geology, 232, 12–32.

    Article  Google Scholar 

  • Tyson, R. V., & Pearson, T. H. (1991). Modern and ancient continental shelf anoxia: An overview. Geological Society, London, Special Publications, 58, 1–24.

    Article  Google Scholar 

  • Van Kranendonk, M. J., Webb, G. E., & Kamber, B. S. (2003). Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean. Geobiology, 1, 91–108.

    Article  Google Scholar 

  • Wang, Z., Fu, X., Feng, X., Song, C., Wang, D., Chen, W., & Zeng, S. (2017). Geochemical features of the black shales from the Wuyu Basin, southern Tibet: Implications for palaeoenvironment and palaeoclimate. Geological Journal, 2017(52), 282–297.

    Article  Google Scholar 

  • Webb, G. E., & Kamber, B. S. (2000). Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochimica et Cosmochimica Acta, 64, 1557–1565.

    Article  Google Scholar 

  • Weijers, J. W. H., Schouten, S., Sluijs, A., Brinkhuis, H., & Sinninghe Damsté, J. S. (2007). Warm arctic continents during the Palaeocene–Eocene thermal maximum: Earth Planetary Science Letter, 261, 230–238.

    Google Scholar 

  • Westerhold, T., Röhl, U., Donner, B., McCarren, H. K., & Zachos, J. C. (2011). A complete high resolution Paleocene benthic stable isotope record for the central Pacific (ODP Site 1209). Paleoceanography 26(2).‏

    Google Scholar 

  • Westerhold, T., Röhl, U., Donner, B., & Zachos, J. C. (2018). Global extent of early Eocene hyperthermal events—A new Pacific benthic foraminiferal isotope record from Shatsky Rise (ODP Site 1209). Paleoceanography and Paleoclimatology, 33(6), 626–642.

    Article  Google Scholar 

  • Westerhold, T., Röhl, U., McCarren, H. K., & Zachos, J. C. (2009). Latest on the absolute age of the Paleocene–Eocene Thermal Maximum (PETM): New insights from exact strati-graphic position of key ash layers +19 and −17. Earth Planetary Science Letter, 287, 412–419.

    Google Scholar 

  • Whiticar, M. J. (1999). Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161, 291–314.

    Article  Google Scholar 

  • Wieczorek, R., Fantle, M. S., Kump, L. R., & Ravizza, G. (2013). Geochemical evidence for volcanic activity prior to and enhanced terrestrial weathering during the Paleocene Eocene Thermal Maximum: Geochimica et Cosmochimica Acta, 119, 391–410. https://doi.org/10.1016/j.gca.2013.06.005.

  • Wing, S. L., & Currano, E. D. (2013). Plant response to a global greenhouse event 56 million years ago. American Journal of Botany, 100(7), 1234–1254.

    Article  Google Scholar 

  • Wing, S. L., Harrington, G. J., Bowen, G. J., & Koch, P. L. (2003). Causes and consequences of globally warm climates in the Early Paleogene. In S. L. Wing, P. D. Gingerich, S. Birger, & E. Thomas (Eds.), Geological society of America special paper (Vol. 369, pp. 425–440).

    Google Scholar 

  • Wing, S. L., Harrington, G. J., Smith, F. A., Bloch, J. I., Boyer, D. M., & Freeman, K. H. (2005). Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science, 310, 993–996.

    Article  Google Scholar 

  • Yandoka, B. M. S., Abdullah, W. H., Abubakar, M. B., Hakimi, M. H., & Adegoke, A. K. (2015). Geochemical characterization of Early Cretaceous lacustrine sediments of Bima Formation, Yola Sub-basin, Northern Benue Trough, NE Nigeria: Organic matter input, preservation, paleoenvironment and paleoclimatic conditions. Marine and Petroleum Geology, 61, 82–94.

    Article  Google Scholar 

  • Zachos, J. C., Dickens, G. R., & Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon cycle dynamics. Nature, 451, 279–283.

    Google Scholar 

  • Zachos, J. C., Pagani, M., Sloan, L. C., Billups, K., & Thomas, E. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 92, 686–693.

    Article  Google Scholar 

  • Zachos, J. C., Röhl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A., Kelly, D. C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L. J., & McCarren, H. (2005). Rapid acidification of the ocean during the Paleocene-Eocene Thermal Maximum. Science, 308, 1611–1615.

    Google Scholar 

  • Zachos, J. C., Schouten, S., Bohaty, S., Quattlebaum, T., Sluijs, A., Brinkhuis, H., Gibbs, S. J., & Bralower, T. J. (2006). Extreme warming of mid-latitude coastal ocean during the Paleocene Eocene thermal maximum: Inferences from TEX86 and isotope data. Geology, 34(9), 737–740. https://doi.org/10.1130/G22522.1

  • Zeebe, R. E., Zachos, J. C., & Dickens, G. R. (2009). Carbon dioxide forcing alone insufficient to explain Palaeocene-Eocene thermal maximum warming. Nature Geoscience, 2, 576–580. https://doi.org/10.1038/ngeo578

    Article  Google Scholar 

  • Ziegler, P. A. (1990). Geological Atlas of Western and Central Europe (2nd ed., p. 239). Shell International Petroleum Mij. B.V. and Geological Society.

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their profound thanks to staff member of the sedimentary mineralogy and geochemistry labs of Lausanne University. The thanks is as well extended to Prof. Dr. Jorge E. Spangenberg for his continuous support and fruitful discussion during the preparation of the manuscript and technical and laboratory facilities that he offers during the analysis of isotopes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Khozyem .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (png 197 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khozyem, H., Adatte, T., Keller, G. (2023). Climatic and Environmental Changes During Paleocene-Eocene Thermal Maximum in Egypt: An Overview. In: Hamimi, Z., et al. The Phanerozoic Geology and Natural Resources of Egypt. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-95637-0_12

Download citation

Publish with us

Policies and ethics