Skip to main content

Space Detectors of GW

  • Chapter
  • First Online:
Experimental Gravitation

Part of the book series: Lecture Notes in Physics ((LNP,volume 998))

Abstract

Space-based detectors of gravitational waves are the next frontier of astrophysics: space allows Gm-long interferometer arms, and thus exploration of the frequency band 20\(\mu \) Hz–1 Hz. This chapter reviews the wealth of gravitational wave sources available in this band that provide a strong science case and motivation for the enterprise. We then describe the challenges of a Gm-long, space-based interferometer and the experimental strategies under development, by the LISA team, to overcome these difficulties. LISA is the most mature space-based detector, scheduled for launch in 2035, but the same technologies will be employed in other, planned missions briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    GAIA: Global Astrometric Interferometer for Astrophysics.

  2. 2.

    A notable exception is the BNS event GW 170817, that had a duration of approximately 100 s.

  3. 3.

    Laser Antena for Gravitational radiation Observation in Space.

  4. 4.

    Spaceborne Astronomical Gravitational-wave Interferometer To Test Aspects of Relativity and Investigate Unknown Sources.

  5. 5.

    Orbiting Medium Explorer for Gravitational-wave Astrophysics.

  6. 6.

    Laser Interferometer Space Antenna for Gravity.

  7. 7.

    Evolved LISA/Next Gravitational Observatory.

  8. 8.

    The inclination and ellipticity reported here are approximations, for small values of \(\alpha \), of exact relations, for the particular case considered here: \(\tan i =\frac{\alpha }{1+ \alpha /\sqrt{3}}\) and \( e= \sqrt{1 + \frac{2 \alpha }{\sqrt{3}} +\frac{4\alpha ^2}{3}} - 1\).

  9. 9.

    The motion of the LISA constellation can be visualized through the animated gif: https://it.wikipedia.org/wiki/File:LISA_motion.gif or through the video by the Max Planck Institute for Grav. Physics: https://www.youtube.com/watch?v=x-k112InxfY. Both of them are largely not-to-scale to improve the view of the orbits.

  10. 10.

    The optimum value is actually \(\frac{\pi }{3} + \frac{5}{8} \alpha \), given by a slightly different orbit inclination i, but we shall neglect these subtleties.

  11. 11.

    Appendix A might be useful in refreshing some concepts about modulation.

  12. 12.

    Authority is the maximum force or torque that an actuator can provide.

  13. 13.

    We remind the reader that the noise spectral density \(S_h(f)\) is closely related to the inverse of the SNR.

  14. 14.

    Here we derogate from the usual TDI convention of naming the arm with the number of the opposite spacecraft; we are just presenting an example, and privilege clarity and immediacy over completeness.

  15. 15.

    “Reflected” is to be intended as “transponded”.

  16. 16.

    The arm flexing occurs on time scales of one revolution, that is 1 yr, as shown in Fig. 11.4; during a light travel time, \(2T_i \simeq 16.6\) s, the constellation is virtually still.

  17. 17.

    The Lagrange points are defined in a footnote of Sect. 6.6.1.

  18. 18.

    This was possible because the local gravity turned out to be extremely well balanced: no serious gradient was measured on TM2.

  19. 19.

    GADFLI: Geostationary Antenna for Disturbance-Free Laser Interferometry.

  20. 20.

    gLISA: Geosynchronous Laser Interferometer Space Antenna.

References

  • Abbott, B.P., et al.: Multi-messenger observations of a binary neutron star merger. ApJL 848(L12), 1–59 (2017a)

    Google Scholar 

  • Abbott, B., et al.: GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017b)

    Google Scholar 

  • Abich, K., et al.: In-orbit performance of the GRACE follow-on laser ranging interferometer. Phys. Rev. Lett. 123, 031101 (2019)

    Article  ADS  Google Scholar 

  • Amaro-Seoane, P., et al.: Low-frequency gravitational-wave science with eLISA/NGO class. Quantum Grav. 29, 124016 (2012)

    Article  ADS  Google Scholar 

  • Armano, M., et al.: Sub-Femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results. Phys. Rev. Lett. 116, 231101 (7pp) (2016)

    Article  ADS  Google Scholar 

  • Armano, M., et al.: Beyond the required LISA free-fall performance: new LISA pathfinder results down to 20 $\mu $Hz. Phys. Rev. Lett. 120, 061101 (10 pp) (2018)

    Google Scholar 

  • Babak, S., et al.: Science with the space-based interferometer LISA. V: extreme mass-ratio inspirals. Phys. Rev. D 95, 103012(21) (2017)

    Google Scholar 

  • Babak, S., Hewitson, M., Petiteau, A.: LISA sensitivity and SNR calculations. Technical Note LISA-LCST-SGS-TN-001. arXiv:2108.01167 (2021)

  • Barausse, E., et al.: Prospects for fundamental physics with LISA. Gen Relativ Grav. 52, 81 (2020)

    Article  ADS  Google Scholar 

  • Bassan, M., et al.: Approaching free fall on two degrees of freedom: simultaneous measurement of residual force and torque on a double torsion pendulum. Phys. Rev. Lett. 116, 051104 (2016)

    Article  ADS  Google Scholar 

  • Cavalleri, A., et al.: Direct force measurements for testing the LISA Pathfinder gravitational reference sensor. Class. Quantum Grav. 26, 094012 (10pp) (2009)

    Google Scholar 

  • Danzmann, K., et al.: LISA Laser Interferometer Space Antenna - A proposal in response to the ESA call for L3 mission concepts (2017). arXiv:1702.00786

  • De Bra, D.B., Dassoulas, J., Kershner, R.B.: A satellite freed of all but gravitational forces: “TRIAD I’’. J. Spacecr. 11, 637 (1974)

    Article  Google Scholar 

  • Faller, J.E., et al.: Space antenna for gravitational wave astronomy. In: Proc. Colloquium “Kilometric Optical Arrays in Space” ESA-SP226 (1985)

    Google Scholar 

  • Gong, Y., Luo, J., Wang, B.: Concepts and status of Chinese space gravitational wave detection projects. Nat. Astron. 5, 881–889 (2021)

    Google Scholar 

  • Jennrich, O.: LISA technology and instrumentation. Class. Quantum Grav. 26, 153001 (2009)

    Article  ADS  MATH  Google Scholar 

  • Kawamura, S., et al.: Current status of space gravitational wave antenna DECIGO and B- DECIGO. Theor. Exp. Phys. 2021, 05A105 (2021)

    Article  Google Scholar 

  • Lange, B.: The drag-free satellite. AIAA J. 2, 1590 (1964)

    Article  ADS  MATH  Google Scholar 

  • Larson, S.L., Hiscock, W.A., Hellings, R.W.: Sensitivity curves for spaceborne gravitational wave interferometers. Phys. Rev. D 62, 062001 (2000)

    Article  ADS  Google Scholar 

  • Mitryk, S.J., Mueller, G., Sanjuan, J.: Hardware-based demonstration of time-delay interferometry and TDI-ranging with spacecraft motion effects. Phys. Rev. D 86, 122006 (2012)

    Article  ADS  Google Scholar 

  • Muratore, M., Vetrugno, D., Vitale, S.: Revisitation of time delay interferometry combinations that suppress laser noise in LISA. Class. Quantum Grav. 37, 185019 (18pp) (2020)

    Google Scholar 

  • Pierce, R., et al.: Intersatellite range monitoring using optical interferometry. Appl. Opt. 47, 5007–5019 (2008)

    Article  ADS  Google Scholar 

  • Pucacco, G., Bassan, M., Visco, M.: Autonomous perturbations of LISA orbits. Class. Quantum Grav. 27, 235001 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Schutz, B.F.: Determining the Hubble constant form gravitational wave observations. Nature 323, 310 (1986)

    Article  ADS  Google Scholar 

  • Sesana, A.: Prospects for multiband gravitational-wave astronomy after GW150914. Phys. Rev. Lett. 116, 231102 (2016)

    Article  ADS  Google Scholar 

  • The LISA Consortium: The Gravitational Universe (2013). - arXiv:1305.5720

  • Tinto, M., Dhurandhar, S.V.: Time-delay interferometry. Living Rev. Relativ. 24, 1 (2021)

    Article  ADS  MATH  Google Scholar 

  • van Veggel, A.M.A., Killow, C.J.: Hydroxide catalysis bonding for astronomical instruments. Advan. Opt. Technol. 3, 293–307 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulvio Ricci .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ricci, F., Bassan, M. (2022). Space Detectors of GW. In: Experimental Gravitation. Lecture Notes in Physics, vol 998. Springer, Cham. https://doi.org/10.1007/978-3-030-95596-0_11

Download citation

Publish with us

Policies and ethics