Skip to main content

A Systematic Study of the Influence of Various User Specific and Environmental Factors on Wearable Human Body Capacitance Sensing

  • Conference paper
  • First Online:
Body Area Networks. Smart IoT and Big Data for Intelligent Health Management (BODYNETS 2021)

Abstract

Body capacitance change is an interesting signal for a variety of body sensor network applications in activity recognition. Although many promising applications have been published, capacitive on body sensing is much less understood than more dominant wearable sensing modalities such as IMUs and has been primarily studied in individual, constrained applications. This paper aims to go from such individual-specific application to a systemic analysis of how much the body capacitance is influenced by what type of factors and how does it vary from person to person. The idea is to provide a basic form which other researchers can decide if and in what form capacitive sensing is suitable for their specific applications. To this end, we present a design of a low power, small form factor measurement device and use it to measure the capacitance of the human body in various settings relevant for wearable activity recognition. We also demonstrate on simple examples how those measurements can be translated into use cases such as ground type recognition, exact step counting and gait partitioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skeldon, K.D., Reid, L.M., McInally, V., Dougan, B., Fulton, C.: Physics of the Theremin. Am. J. Phys. 66(11), 945–955 (1998)

    Google Scholar 

  2. Fritz, T.: ThereminVision-II instruction manual (2004)

    Google Scholar 

  3. Arshad, A., Khan, S., Alam, A.H.M.Z., Kadir, K.A., Tasnim, R., Ismail, A.F.: A capacitive proximity sensing scheme for human motion detection. In: 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–5. IEEE (2017)

    Google Scholar 

  4. Hirsch, M., Cheng, J., Reiss, A., Sundholm, M., Lukowicz, P., Amft, O.: Hands-free gesture control with a capacitive textile neckband. In: Proceedings of the 2014 ACM International Symposium on Wearable Computers, pp. 55–58 (2014)

    Google Scholar 

  5. Bian, S., Lukowicz, P.: Capacitive sensing based on-board hand gesture recognition with TinyML. In: UbiComp-ISWC 2021 Adjunct: Adjunct Proceedings of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM International Symposium on Wearable Computers, Virtual, USA. ACM, September 2021

    Google Scholar 

  6. Cohn, G., Morris, D., Patel, S., Tan, D.: Humantenna: using the body as an antenna for real-time whole-body interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1901–1910 (2012)

    Google Scholar 

  7. Aliau Bonet, C., Pallàs Areny, R.: A fast method to estimate body capacitance to ground. In: Proceedings of XX IMEKO World Congress 2012, Busan, South Korea, 9–14 September 2019, pp. 1–4 (2012)

    Google Scholar 

  8. Aliau-Bonet, C., Pallas-Areny, R.: A novel method to estimate body capacitance to ground at mid frequencies. IEEE Trans. Instrum. Meas. 62(9), 2519–2525 (2013)

    Google Scholar 

  9. Buller, W., Wilson, B.: Measurement and modeling mutual capacitance of electrical wiring and humans. IEEE Trans. Instrum. Meas. 55(5), 1519–1522 (2006)

    Google Scholar 

  10. Forster, I.C.: Measurement of patient body capacitance and a method of patient isolation in mains environments. Med. Biol. Eng. 12(5), 730–732 (1974). https://doi.org/10.1007/BF02477239

    Article  Google Scholar 

  11. Greason, W.D.: Quasi-static analysis of electrostatic discharge (ESD) and the human body using a capacitance model. J. Electrostat. 35(4), 349–371 (1995)

    Google Scholar 

  12. Huang, J., Wu, Z., Liu, S.: Why the human body capacitance is so large. In: Proceedings Electrical Overstress/Electrostatic Discharge Symposium, pp. 135–138. IEEE (1997)

    Google Scholar 

  13. Pallas-Areny, R., Colominas, J.: Simple, fast method for patient body capacitance and power-line electric interference measurement. Med. Biol. Eng. Comput. 29(5), 561–563 (1991). https://doi.org/10.1007/BF02442332

    Article  Google Scholar 

  14. Sălceanu, A., Neacşu, O., David, V., Luncă, E.: Measurements upon human body capacitance: theory and experimental setup (2004)

    Google Scholar 

  15. Jonassen, N.: Human body capacitance: static or dynamic concept? [ESD]. In: Electrical Overstress/Electrostatic Discharge Symposium Proceedings 1998 (Cat. No. 98TH8347), pp. 111–117. IEEE (1998)

    Google Scholar 

  16. Fujiwara, O., Ikawa, T.: Numerical calculation of human-body capacitance by surface charge method. Electron. Commun. Jpn (Part I: Commun.) 85(12), 38–44 (2002)

    Google Scholar 

  17. Serrano, R.E., Gasulla, M., Casas, O., Pallàs-Areny, R.: Power line interference in ambulatory biopotential measurements. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), vol. 4, pp. 3024–3027. IEEE (2003)

    Google Scholar 

  18. Haberman, M., Cassino, A., Spinelli, E.: Estimation of stray coupling capacitances in biopotential measurements. Med. Biol. Eng. Comput. 49(9) (2011). Article number: 1067. https://doi.org/10.1007/s11517-011-0811-6

  19. Fish, R.M., Geddes, L.A.: Conduction of electrical current to and through the human body: a review. Eplasty 9, e44 (2009)

    Google Scholar 

  20. TI: Texas Instrument LMC555, June 2016. http://www.ti.com/lit/ds/symlink/lmc555.pdf

  21. TI: How do i design a-stable timer, oscillator, circuits using LMC555, TLC555, LM555, NA555, NE555, SA555, or SE555. https://e2e.ti.com/support/clock-andtiming/f/48/t/879112?tisearch=e2e-sitesearchamp;keymatch=lmc555

  22. PJRC: Teensy 3.6. https://www.pjrc.com/store/teensy36.html

  23. Grosse-Puppendahl, T.: Capacitive sensing and communication for ubiquitous interaction and environmental perception. Ph.D. thesis, Technische Universität (2015)

    Google Scholar 

  24. Cheng, J., Amft, O., Bahle, G., Lukowicz, P.: Designing sensitive wearable capacitive sensors for activity recognition. IEEE Sens. J. 13(10), 3935–3947 (2013)

    Google Scholar 

  25. Castle, G.S.P.: Contact charging between insulators. J. Electrostat. 40, 13–20 (1997)

    Google Scholar 

  26. Electrostatic-Discharge-Association: Handbook for the Development of an Electrostatic Discharge Control Program for the Protection of Electronic Parts, Assemblies, and Equipment. TR20.20-2016

    Google Scholar 

  27. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    MATH  Google Scholar 

  29. Kuhn, M., Johnson, K.: Feature Engineering and Selection: A Practical Approach for Predictive Models. CRC Press, Boca Raton (2019)

    Google Scholar 

  30. Foster, R.C., et al.: Precision and accuracy of an ankle-worn accelerometer-based pedometer in step counting and energy expenditure. Prev. Med. 41(3–4), 778–783 (2005)

    Google Scholar 

  31. Pan, M.-S., Lin, H.-W.: A step counting algorithm for smartphone users: design and implementation. IEEE Sens. J. 15(4), 2296–2305 (2014)

    Google Scholar 

  32. Rhudy, M.B., Mahoney, J.M.: A comprehensive comparison of simple step counting techniques using wrist-and ankle-mounted accelerometer and gyroscope signals. J. Med. Eng. Technol. 42(3), 236–243 (2018)

    Google Scholar 

  33. Do, T.-N., Liu, R., Yuen, C., Tan, U.-X.: Design of an infrastructureless in-door localization device using an IMU sensor. In: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2115–2120. IEEE (2015)

    Google Scholar 

  34. Ashkar, R., Romanovas, M., Goridko, V., Schwaab, M., Traechtler, M., Manoli, Y.: A low-cost shoe-mounted inertial navigation system with magnetic disturbance compensation. In: International Conference on Indoor Positioning and Indoor Navigation, pp. 1–10. IEEE (2013)

    Google Scholar 

  35. Mariani, B., Hoskovec, C., Rochat, S., Büla, C., Penders, J., Aminian, K.: 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J. Biomech. 43(15), 2999–3006 (2010)

    Google Scholar 

  36. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020)

    Google Scholar 

  37. Sofuwa, O., Nieuwboer, A., Desloovere, K., Willems, A.-M., Chavret, F., Jonkers, I.: Quantitative gait analysis in Parkinson’s disease: comparison with a healthy control group. Arch. Phys. Med. Rehabil. 86(5), 1007–1013 (2005)

    Google Scholar 

  38. Salarian, A., et al.: Gait assessment in Parkinson’s disease: toward an ambulatory system for long-term monitoring. IEEE Trans. Biomed. Eng. 51(8), 1434–1443 (2004)

    Google Scholar 

  39. Pedersen, S.W., Oberg, B., Larsson, L.E., Lindval, B.: Gait analysis, isokinetic muscle strength measurement in patients with Parkinson’s disease. Scand. J. Rehabil. Med. 29(2), 67–74 (1997)

    Google Scholar 

  40. Givon, U., Zeilig, G., Achiron, A.: Gait analysis in multiple sclerosis: characterization of temporal-spatial parameters using GAITRite functional ambulation system. Gait Posture 29(1), 138–142 (2009)

    Google Scholar 

  41. Benedetti, M.G., Piperno, R., Simoncini, L., Bonato, P., Tonini, A., Giannini, S.: Gait abnormalities in minimally impaired multiple sclerosis patients. Multiple Sclerosis J. 5(5), 363–368 (1999)

    Google Scholar 

  42. Guner, S., Inanici, F.: Yoga therapy and ambulatory multiple sclerosis assessment of gait analysis parameters, fatigue and balance. J. Bodyw. Mov. Ther. 19(1), 72–81 (2015)

    Google Scholar 

  43. Buderath, P., et al.: Postural and gait performance in children with attention deficit/hyperactivity disorder. Gait Posture 29(2), 249–254 (2009)

    Google Scholar 

  44. Papadopoulos, N., McGinley, J.L., Bradshaw, J.L., Rinehart, N.J.: An investigation of gait in children with attention deficit hyperactivity disorder: a case controlled study. Psychiatry Res. 218(3), 319–323 (2014)

    Google Scholar 

  45. Leitner, Y., et al.: Gait in attention deficit hyperactivity disorder. J. Neurol. 254(10), 1330–1338 (2007). https://doi.org/10.1007/s00415-006-0522-3

    Article  Google Scholar 

  46. Morris, M.E., Matyas, T.A., Iansek, R., Summers, J.J.: Temporal stability of gait in Parkinson’s disease. Phys. Ther. 76(7), 763–777 (1996)

    Google Scholar 

  47. Trojaniello, D., Ravaschio, A., Hausdorff, J.M., Cereatti, A.: Comparative assessment of different methods for the estimation of gait temporal parameters using a single inertial sensor: application to elderly, post-stroke, Parkinson’s disease and Huntington’s disease subjects. Gait Posture 42(3), 310–316 (2015)

    Google Scholar 

  48. Hori, K., et al.: Inertial measurement unit-based estimation of foot trajectory for clinical gait analysis. Front. Physiol. 10, 1530 (2019)

    Google Scholar 

  49. Hu, X., Huang, Z., Jiang, J., Qu, X.: An inertial sensor based system for real-time biomechanical analysis during running. J. Med. Bioeng. 6(1), 1–5 (2017)

    Google Scholar 

  50. Woyano, F., Lee, S., Park, S.: Evaluation and comparison of performance analysis of indoor inertial navigation system based on foot mounted IMU. In: 2016 18th International Conference on Advanced Communication Technology (ICACT), pp. 792–798. IEEE (2016)

    Google Scholar 

  51. Taborri, J., Palermo, E., Rossi, S., Cappa, P.: Gait partitioning methods: a systematic review. Sensors 16(1), 66 (2016)

    Google Scholar 

  52. Selles, R.W., Formanoy, M.A.G., Bussmann, J.B.J., Janssens, P.J., Stam, H.J.: Automated estimation of initial and terminal contact timing using accelerometers; development and validation in transtibial amputees and controls. IEEE Trans. Neural Syst. Rehabil. Eng. 13(1), 81–88 (2005)

    Google Scholar 

  53. Han, J., Jeon, H.S., Jeon, B.S., Park, K.S.: Gait detection from three dimensional acceleration signals of ankles for the patients with Parkinson’s disease. In: Proceedings of the IEEE The International Special Topic Conference on Information Technology in Biomedicine, Ioannina, Epirus, Greece, vol. 2628 (2006)

    Google Scholar 

  54. Formento, P.C., Acevedo, R., Ghoussayni, S., Ewins, D.: Gait event detection during stair walking using a rate gyroscope. Sensors 14(3), 5470–5485 (2014)

    Google Scholar 

  55. Darwin Gouwanda and Alpha Agape Gopalai: A robust real-time gait event detection using wireless gyroscope and its application on normal and altered gaits. Med. Eng. Phys. 37(2), 219–225 (2015)

    Google Scholar 

  56. Lau, H., Tong, K.: The reliability of using accelerometer and gyroscope for gait event identification on persons with dropped foot. Gait Posture 27(2), 248–257 (2008)

    Google Scholar 

  57. Kotiadis, D., Hermens, H.J., Veltink, P.H.: Inertial gait phase detection for control of a drop foot stimulator: inertial sensing for gait phase detection. Med. Eng. Phys. 32(4), 287–297 (2010)

    Google Scholar 

  58. Agostini, V., Balestra, G., Knaflitz, M.: Segmentation and classification of gait cycles. IEEE Trans. Neural Syst. Rehabil. Eng. 22(5), 946–952 (2013)

    Google Scholar 

  59. Lie, Yu., Zheng, J., Wang, Y., Song, Z., Zhan, E.: Adaptive method for real-time gait phase detection based on ground contact forces. Gait Posture 41(1), 269–275 (2015)

    Google Scholar 

  60. Kim, H., Kang, Y., Valencia, D.R., Kim, D.: An integrated system for gait analysis using FSRs and an IMU. In: 2018 Second IEEE International Conference on Robotic Computing (IRC), pp. 347–351. IEEE (2018)

    Google Scholar 

  61. Lauer, R.T., Smith, B.T., Coiro, D., Betz, R.R., McCarthy, J.: Feasibility of gait event detection using intramuscular electromyography in the child with cerebral palsy. Neuromodulation Technol. Neural Interface 7(3), 205–213 (2004)

    Google Scholar 

  62. Joshi, C.D., Lahiri, U., Thakor, N.V.: Classification of gait phases from lower limb EMG: application to exoskeleton orthosis. In: 2013 IEEE Point-of-Care Healthcare Technologies (PHT), pp. 228–231. IEEE (2013)

    Google Scholar 

  63. Qi, Y., Soh, C.B., Gunawan, E., Low, K.-S., Thomas, R.: Assessment of foot trajectory for human gait phase detection using wireless ultrasonic sensor network. IEEE Trans. Neural Syst. Rehabil. Eng. 24(1), 88–97 (2015)

    Google Scholar 

  64. Galois, L., Girard, D., Martinet, N., Delagoutte, J.P., Mainard, D.: Optoelectronic gait analysis after metatarsophalangeal arthrodesis of the hallux: fifteen cases. Rev. Chir. Orthop. Reparatrice Appar. Mot. 92(1), 52–59 (2006)

    Google Scholar 

  65. OHMITE: FSR series force sensing resistor (2020)

    Google Scholar 

  66. Panebianco, G.P., Bisi, M.C., Stagni, R., Fantozzi, S.: Analysis of the performance of 17 algorithms from a systematic review: influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements. Gait Posture 66, 76–82 (2018)

    Google Scholar 

  67. Catalfamo, P., Ghoussayni, S., Ewins, D.: Gait event detection on level ground and incline walking using a rate gyroscope. Sensors 10(6), 5683–5702 (2010)

    Google Scholar 

  68. McGill, R., Tukey, J.W., Larsen, W.A.: Variations of box plots. Am. Stat. 32(1), 12–16 (1978)

    Google Scholar 

  69. Braun, A., Hamisu, P.: Using the human body field as a medium for natural interaction. In: Proceedings of the 2nd International Conference on PErvasive Technologies Related to Assistive Environments, pp. 1–7 (2009)

    Google Scholar 

  70. Braun, A., Hamisu, P.: Designing a multi-purpose capacitive proximity sensing input device. In: Proceedings of the 4th International Conference on PErvasive Technologies Related to Assistive Environments, pp. 1–8 (2011)

    Google Scholar 

  71. Bian, S., Rey, V.F., Younas, J., Lukowicz, P.: Wrist-worn capacitive sensor for activity and physical collaboration recognition. In: 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 261–266. IEEE (2019)

    Google Scholar 

  72. Bian, S., Rey, V.F., Hevesi, P., Lukowicz, P.: Passive capacitive based approach for full body gym workout recognition and counting. In: 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 1–10. IEEE (2019)

    Google Scholar 

  73. Bian, S., Yuan, S., Rey, V.F., Lukowicz, P.: Using human body capacitance sensing to monitor leg motion dominated activities with a wrist worn device. In: Activity and Behavior Computing. Springer (2022)

    Google Scholar 

  74. Du, L.: An overview of mobile capacitive touch technologies trends. arXiv preprint arXiv:1612.08227 (2016)

  75. Savage, V., Zhang, X., Hartmann, B.: Midas: fabricating custom capacitive touch sensors to prototype interactive objects. In: Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, pp. 579–588 (2012)

    Google Scholar 

  76. Curtis, K., Perme, T.: Capacitive multibutton configurations (2007)

    Google Scholar 

  77. Leeper, A.K.: 14.2: integration of a clear capacitive touch screen with a 1/8-VGA FSTN-LCD to form and LCD-based touchpad. In: SID Symposium Digest of Technical Papers, vol. 33, pp. 187–189. Wiley Online Library (2002)

    Google Scholar 

  78. Baxter, L.K.: Capacitive Sensors: Design and Applications (1997)

    Google Scholar 

  79. AL-Khalidi, F.Q., Saatchi, R., Burke, D., Elphick, H., Tan, S.: Respiration rate monitoring methods: a review. Pediatr. Pulmonol. 46(6), 523–529 (2011)

    Google Scholar 

  80. Wang, H., et al.: Human respiration detection with commodity wifi devices: do user location and body orientation matter? In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 25–36 (2016)

    Google Scholar 

  81. Li, X., Qiao, D., Li, Y., Dai, H.: A novel through-wall respiration detection algorithm using UWB radar. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1013–1016. IEEE (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sizhen Bian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bian, S., Lukowicz, P. (2022). A Systematic Study of the Influence of Various User Specific and Environmental Factors on Wearable Human Body Capacitance Sensing. In: Ur Rehman, M., Zoha, A. (eds) Body Area Networks. Smart IoT and Big Data for Intelligent Health Management. BODYNETS 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 420. Springer, Cham. https://doi.org/10.1007/978-3-030-95593-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95593-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95592-2

  • Online ISBN: 978-3-030-95593-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics