Skip to main content

Emerging Biotechnological Processes in Controlling Nitrogen Pollution to Minimize Eutrophication of Surface Waters in Asia

  • Chapter
  • First Online:
Environmental Degradation: Challenges and Strategies for Mitigation

Abstract

Nitrogen pollution from domestic, industrial, and agricultural sources leads to eutrophication and other adverse effects in aquatic systems. Therefore, nitrogen removal from wastewaters before disposal into water bodies is necessary. Many countries have enforced stringent discharge standards as less as10 mg/L as N to control nitrogen pollution. This book chapter reviews the emerging biotechnological processes in controlling nitrogen pollution cost-effectively and helps in meeting stringent discharge standards in contrast to the conventional nitrification–denitrification process. The emphasis of review is on process description and influencing parameters, merits/demerits of each process, and the reactor types employed using the literature reported in the last two decades. Finally, a comprehensive evaluation is done on the process performance for selecting the appropriate process for controlling nitrogen pollution from wastewaters, and recommendations are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeling U, Seyfried C (1992) Anaerobic-aerobic treatment of high strength ammonium wastewater-nitrogen removal via nitrite. Water Sci Technol 26 (5–6):1007–1015

    Google Scholar 

  • Ahn YH (2006) Sustainable nitrogen elimination biotechnologies: a review. Process Biochem 41(8):1709–1721

    Article  CAS  Google Scholar 

  • Anjali G, Sabumon PC (2015) Development of enhanced SNAD process in a down—flow packed bed reactor for removal of higher concentrations of NH4–N and COD. J Environ Chem Eng 3(2):1009–1017

    Google Scholar 

  • Arp DJ, Stein LY (2003) Metabolism of inorganic n compounds by ammonia-oxidizing bacteria. Crit Rev Biochem Mol Biol 38(6):471–495

    Article  CAS  Google Scholar 

  • Aslan S, Miller L, Dahab M (2009) Ammonium oxidation via nitrite accumulation under limited oxygen concentration in sequencing batch reactors. Bioresour Technol 100(2):659–664

    Google Scholar 

  • Bagchi S, Biswas R, Nandy T (2012) Autotrophic ammonia removal processes: ecology to technology. Crit Rev Environ Sci Technol 42(13):1353–1418

    Article  CAS  Google Scholar 

  • Bernet N, Sanchez O, Cesbron D, Steyer JP, Delgenes JP (2005) Modeling and control of nitrite accumulation in a nitrifying biofilm reactor. Biochem Eng J 24(2):173–183

    Google Scholar 

  • Broda E (1977) Twokinds of lithotrophs missing in nature. J Basic Microbiol 17 (6):491–493

    Google Scholar 

  • Carvajal-Arroyo JM, Sun W, Sierra-Alvarez R, Field JA (2013) Inhibition of anaerobic ammonium oxidizing (anammox) enrichment cultures by substrates, metabolites and common wastewater constituents. Chemosphere 91(1):22–27

    Article  CAS  Google Scholar 

  • Chamchoi N, Nitisoravut S, Schmidt JE (2008) Inactivation of anammox communities under concurrent operation of anaerobic ammonium oxidation (anammox) and denitrification. Bioresour Technol 99(9):3331–3336

    Google Scholar 

  • Chen H, Liu S, Yang F, Xue Y, Wang T (2009) The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal. Bioresour Technol 100(4):1548–1554

    Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Biores Technol 99(10):4044–4064

    Article  CAS  Google Scholar 

  • Chen S, Ding B, Qin Y, Chen Z, Li Z (2020) Nitrogen loss through anaerobic ammonium oxidation mediated by Mn(IV)-oxide reduction from agricultural drainage ditches into Jiuli River, Taihu Lake Basin. Sci Total Environ 700:134512

    Google Scholar 

  • Chung J, Bae W (2002) Nitrite reduction by a mixed culture under conditions relevant to shortcut biological nitrogen removal. Biodegradation 13(3):163–170

    Google Scholar 

  • Dapena-Mora A, Campos JL, Mosquera-Corral A, Jetten MSM, Mendez R (2004) Stability of the ANAMMOX process in a gas-lift reactor and a SBR. J Biotechnol 110:159–170

    Google Scholar 

  • Desireddy S (2021) Development of a novel nano-biotechnological process for the removal of ammonia from wastewaters. Ph.D. thesis, Vellore Institute of Technology, Chennai

    Google Scholar 

  • Desireddy S, Sabumon PC, Shihabudheen MM (2018) Anoxic ammonia removal using Granulated nanoscale oxyhydroxides of Fe (GNOF) in a SBR. J Environ Chem Eng 6:4273–4281

    Article  CAS  Google Scholar 

  • Egli K, Fanger U, Alvarez PJ, Siegrist H, van der Meer JR, Zehnder R (2012) Short-and long-term effects of ammonium and nitrite on the anammox process. J Environ Manage 95:S170–S174

    Google Scholar 

  • Egli K, Fanger U, Alvarez PJ, Siegrist H, van der Meer JR, Zehnder AJ (2001) Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch Microbiol 175(3):198–207

    Google Scholar 

  • Fdz-Polanco F, Villaverde S, Garcia P (1994) Temperature effect on nitrifying bacteria activity in biofilters: activation and free ammonia inhibition. Water Sci Technol 30(11):121–130

    Google Scholar 

  • Feng Y, Lu X, Al-Hazmi H, Makinia J (2017) An overview of the strategies for the deammonification process start-up and recovery after accidental operational failures. Rev Environ Sci Bio/Technol 16(3):541–568

    Google Scholar 

  • Fernández I, Dosta J, Fajardo C, Campos J, Mosquera-Corral A, Méndez R (2012) Short-and long-term effects of ammonium and nitrite on the Anammox process. J Environ Manage 95:S170–S174

    Google Scholar 

  • Hanaki K, Wantawin C, Ohgaki S (1990) Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor. Water Res 24(3):297–302

    Google Scholar 

  • Hao X, Heijnen JJ, van Loosdrecht M (2002) Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (canon) process. Biotechnol Bioeng 77(3):266–277

    Google Scholar 

  • Hellinga C, Schellen A, Mulder JW, van Loosdrecht MV, Heijnen J (1998) The sharon process: an innovative method for nitrogen removal from ammonium rich waste water. Water Sci Technol 37(9):135–142

    Google Scholar 

  • Hippen A, Rosenwinkel KH, Baumgarten G, Seyfried CF (1997) Aerobic deammonification: a new experience in the treatment of wastewaters. Water Sci Technol 35(10):111–120

    Article  CAS  Google Scholar 

  • Hunik J, Meijer H, Tramper J (1993) Kinetics of nitrobacter agilis at extreme substrate, product and salt concentrations. Appl Microbiol Biotechnol 40(2–3):442–448

    Google Scholar 

  • Hussain S, Aziz HA, Isa MH, Adlan MN, Asaari FA (2007) Physico-chemical method for ammonia removal from synthetic wastewater using limestone and GAC in batch and column studies. Bioresour Technolol 98(4):874–880

    Article  CAS  Google Scholar 

  • Jetten MS, Horn SJ, van Loosdrecht MC (1997) Towards a more sustainable municipal wastewater treatment system. Water Sci Technol 35(9):171–180

    Google Scholar 

  • Jetten MS, Schmid M, Schmidt I, Wubben M, Van Dongen U, Abma W, Sliekers O, Revsbech NP, Beaumont HJ, Ottosen L et al (2002) Improved nitrogen removal by application of new nitrogen-cycle bacteria. Rev Environ Sci Biotechnol 1(1):51–63

    Google Scholar 

  • Jetten MS, Wagner M, Fuerst J, van Loosdrecht M, Kuenen G, Strous M (2001) Microbiology and application of the anaerobic ammonium oxidation (anammox) process. Curr Opin Biotechnol 12(3):283–288

    Google Scholar 

  • Jetten MSM, Strous M, van de Pas-Schoonen KT, Schalk J, van Dongan UGJM, van de Graff AA, Logemann S, Muyzer G, van Loosdrecht MCM, Kuenen JG (1999) The anaerobic oxidation of ammonium. FEMS Microbiol Rev 22:421–437

    Google Scholar 

  • Jianlong W, Ning Y (2004) Partial nitrification under limited dissolved oxygen conditions. Process Biochem 39(10):1223–1229

    Google Scholar 

  • Jin RC, Yang GF, Yu JJ, Zheng P (2012) The inhibition of the anammox process: a review. Chem Eng J 197:67–79

    Article  CAS  Google Scholar 

  • Jones L, Provins A, Holland M, Mills G, Hayes F, Emmett B, Hall J, Sheppard L, Smith R, Sutton M, Hicks K, Ashmore M, Haines-Young R, Harper-Simmonds L (2014) A review and application of the evidence for nitrogen impacts on ecosystem services. Ecosyst Serv 7:76–88

    Article  Google Scholar 

  • Jung J, Kang S, Chung Y, Ahn D (2007) Factors affecting the activity of anammox bacteria during start up in the continuous culture reactor. Water Sci Technol 55(1–2):459–468

    Google Scholar 

  • Kalyuzhnyi S, Gladchenko M (2009) Deamox–new microbiological process of nitrogen removal from strong nitrogenous wastewater. Desalination 248(1–3):783–793

    Google Scholar 

  • Kalyuzhnyi S, Gladchenko M, Mulder A, Versprille B (2006) Deamox new biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite. Water Res 40(19):3637–3645

    Article  CAS  Google Scholar 

  • Khim T, Annachhatre AP (2004) Novel microbial nitrogen removal processes. Biotechnol Adv 22(7):519–532

    Article  Google Scholar 

  • Kimura Y, Isaka K, Kazama F (2011) Effects of inorganic carbon limitation on anaerobic ammonium oxidation (anammox) activity. Bioresour Technol 102(6):4390–4394

    Google Scholar 

  • Kuai L, Verstraete W (1998) Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system. Appl Environ Microbiol 64(11):4500–4506

    Google Scholar 

  • Kuenen JG (2008) Anammox bacteria: from discovery to application. Nat Rev Microbiol 6(4):320

    Article  CAS  Google Scholar 

  • Lefebvre O, Neculita CM, Yue X et al (2012) Bioelectrochemical treatment of acid mine drainage dominated with iron. J Hazard Mater 241:411–417

    Article  Google Scholar 

  • Li X, Huang Y, Liu H-w, Wu C, Bi W, Yuan Y et al (2018) Simultaneous Fe(III) reduction and ammonia oxidation process in anammox sludge. J Environ Sci 64:42–50

    Article  CAS  Google Scholar 

  • Magrí A, Be´line F, Dabert P (2013) Feasibility and interest of the anammox process as treatment alternative for anaerobic digester supernatants in manure processing–an overview. J Environ Manage 131:170–184

    Google Scholar 

  • Martinelle K, Westlund A, Häggström L (1996) Ammonium ion transport a cause of cell death. Cytotechnology 22(1–3):251–254

    Google Scholar 

  • Morales N, Del Río ÁV, Vázquez-Padín JR, Méndez R, Mosquera-Corral A, Campos JL (2015) Integration of the anammox process to the rejection water and main stream lines of WWTPs. Chemosphere 140:99–105

    Google Scholar 

  • Mulder A, Van de Graaf AA, Robertson L, Kuenen J (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. Fems Microbiol Ecol 16(3):177–183

    Article  CAS  Google Scholar 

  • Paredes D, Kuschk P, Mbwette T, Stange F, Müller R, Köser H (2007) New aspects of microbial nitrogen transformations in the context of wastewater treatment–a review. Eng Life Sci 7(1):13–25

    Google Scholar 

  • Peng Y, Zhu G (2006) Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Appl Microbiol Biotechnol 73(1):15–26

    Google Scholar 

  • Pynaert K, Smets BF, Beheydt D, Verstraete W (2004) Start-up of autotrophic nitrogen removal reactors via sequential biocatalyst addition. Environ Sci Technol 38(4):1228–1235

    Google Scholar 

  • Pynaert K, Smets BF, Wyffels S, Beheydt D, Siciliano SD, Verstraete W (2003) Characterization of an autotrophic nitrogen-removing biofilm from a highly loaded lab-scale rotating biological contactor. Appl Environ Microbiol 69(6):3626–3635

    Google Scholar 

  • Reddy M, Char N (2006) Management of lakes in India. Lakes Reservoirs Res Manag 11(4):227–237

    Article  Google Scholar 

  • Ruiz G, Jeison D, Chamy R (2003) Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res 37(6):1371–1377

    Google Scholar 

  • Ruiz G, Jeison D, Rubilar O, Chamy R et al (2006) Nitrification–denitrification via nitrite accumulation for nitrogen removal from wastewaters. Bioresour Technol 97(2):330–335

    Google Scholar 

  • Sabumon PC, Shihabudeen MM, Swathi D (2021) Metal Oxyhydroxide mediated anoxic ammonia removal from aqueous solutions. Indian Patent No. 360373

    Google Scholar 

  • Sabumon PC (2008) Development and application of combined sulphidogenesis and ammonia removal process (CSARP) for treatment of tannery effluent. Ph.D. thesis, Indian Institute of Technology, Madras

    Google Scholar 

  • Salem S, Berends D, Heijnen J, Van Loosdrecht M (2003) Bio-augmentation by nitrification with return sludge. Water Res 37(8):1794–1804

    Google Scholar 

  • Schalk J, Oustad H, Kuenen JG, Jetten MSM (1998) The anaerobic oxidation of hydrazine—a novel reaction in microbial nitrogen metabolism. FEMS Microbiol Lett 58:61–67

    Article  Google Scholar 

  • Schmidt I, Sliekers O, Schmid M, Bock E, Fuerst J, Kuenen JG, Jetten MS, Strous M (2003) New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiol Rev 27(4):481–492

    Google Scholar 

  • Schmidt I, Zart D, Bock E (2001) Gaseous NO2 as a regulator for ammonia oxidation of Nitrosomonas eutropha. Antonie van Leeuwenhoek 79(3–4):311–318

    Google Scholar 

  • Shalini SS, Joseph K (2012) Nitrogen management in landfill leachate: application of sharon, anammox and combined sharon–anammox process. Waste Manage 32(12):2385–2400

    Article  Google Scholar 

  • Sliekers AO, Derwort N, Gomez JC, Strous M, Kuenen J, Jetten M (2002) Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Res 36(10):2475–2482

    Google Scholar 

  • Strous M, Heijnen JJ, Kuenen JG, Jetten MSM (1998) The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biotechnol 50:589–596

    Article  CAS  Google Scholar 

  • Strous M, Kuenen JG, Jetten MS (1999) Key physiology of anaerobic ammonium oxidation. Appl Environ Microbiol 65(7):3248–3250

    Google Scholar 

  • Strous M, Van Gerven E, Ping Z, Kuenen JG, Jetten MSM (1997) Ammonium removal from concentrated waste streams with the Anaerobic Ammonium Oxidation (ANAMMOX) process in different reactor configurations. Water Res 31:1955–1962

    Article  CAS  Google Scholar 

  • Swathi D, Sabumon PC, Manasa RL, Alka M (2020) Development of an up-flow anoxic nano-biotechnological reactor for simultaneous removal of ammonia and COD from low C/N secondary treated wastewater. J Water Process Eng 36:101344

    Google Scholar 

  • Swathi D, Sabumon PC, Maliyekkal SM (2017) Microbial mediated anoxic nitrification-denitrification in the presence of nanoscale oxides of manganese. Int Biodeterior Biodegradation 119:499–510

    Article  CAS  Google Scholar 

  • Tang CJ, Zheng P, Zhang L, Chen JW, Mahmood Q, Chen XG, Hu BL, Wang CH, Yu Y (2010) Enrichment features of anammox consortia from methanogenic granules loaded with high organic and methanol contents. Chemosphere 79(6):613–619

    Google Scholar 

  • Third K, Sliekers AO, Kuenen J, Jetten M (2001) The canon system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria. Syst Appl Microbiol 24(4):588–596

    Article  CAS  Google Scholar 

  • Tokutomi T (2004) Operation of a nitrite-type airlift reactor at low do concentration. Water Sci Technol 49(5–6):81–88

    Article  CAS  Google Scholar 

  • Tomaszewski M, Cema G, Ziembińska-Buczyńska A (2017) Influence of temperature and pH on the anammox process: a review and meta-analysis. Chemosphere 182:203–214

    Google Scholar 

  • Van de Graaf AA, De Bruijn P, Robertson LA, Jetten MSM, Kuenen JG (1996) Autotrophic growth of anaerobic ammonium oxidizing micro-organisms in a fluidized bed reactor. Microbiology 142:2187–2196

    Google Scholar 

  • Van Dongen U, Jetten MS, Van Loosdrecht M (2001) The sharon®- anammox® process for treatment of ammonium rich wastewater. Water Sci Technol 44(1):153–160

    Article  Google Scholar 

  • Van Hulle SW, Vandeweyer HJ, Meesschaert BD, Vanrolleghem PA, Dejans P, Dumoulin A (2010) Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chem Eng J 162(1):1–20

    Google Scholar 

  • Vlaeminck S, De Clippeleir H, Verstraete W (2012) Microbial resource management of one‐stage partial nitritation/anammox. Microbial Biotechnol 5(3):433–448

    Google Scholar 

  • Wang CC, Lee PH, Kumar M, Huang YT, Sung S, Lin JG (2010) Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant. J Hazard Mater 175(1–3):622–628

    Article  CAS  Google Scholar 

  • Wang J, Kang J (2005) The characteristics of anaerobic ammonia oxidation (ANAEROBIC AMMONIA REMOVAL) by granular sludge from an EGSB reactor. Process Biochem 40:1973–1978

    Google Scholar 

  • Wett B (2007) Development and implementation of a robust deammonification process. Water Sci Technol 56(7):81–88

    Google Scholar 

  • Xue Y, Yang F, Liu S, Fu Z (2009) The influence of controlling factors on the start-up and operation for partial nitrification in membrane bioreactor. Bioresour Technol 100(3):1055–1060

    Google Scholar 

  • Yoo H, Ahn K-H, Lee H-J, Lee K-H, Kwak Y-J, Song K-G (1999) Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor. Water Res 33(1):145–154

    Google Scholar 

  • Zilverentant AG (2003) Process for the treatment of waste water containing specific components eg ammonia. US Patent 6,602,417

    Google Scholar 

Download references

Acknowledgments

Author acknowledges gratefully for supporting the work presented in this chapter through the research grants DST/WTI/2K13/123 and DST/TM/WTI/WIC/2K17/82 from Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabumon Pothanamkandathil Chacko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chacko, S.P. (2022). Emerging Biotechnological Processes in Controlling Nitrogen Pollution to Minimize Eutrophication of Surface Waters in Asia. In: Singh, V.P., Yadav, S., Yadav, K.K., Yadava, R.N. (eds) Environmental Degradation: Challenges and Strategies for Mitigation. Water Science and Technology Library, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-030-95542-7_6

Download citation

Publish with us

Policies and ethics