Skip to main content

Experimental Results of Vectorized Posit-Based DNNs on a Real ARM SVE High Performance Computing Machine

  • 683 Accesses

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 866)

Abstract

With the pervasiveness of deep neural networks in scenarios that bring real-time requirements, there is the increasing need for optimized arithmetic on high performance architectures. In this paper we adopt two key visions: i) extensive use of vectorization to accelerate computation of deep neural network kernels; ii) adoption of the posit compressed arithmetic in order to reduce the memory transfers between the vector registers and the rest of the memory architecture. Finally, we present our first results on a real hardware implementation of the ARM Scalable Vector Extension.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cococcioni, M., Rossi, F., Ruffaldi, E., Saponara, S.: Fast deep neural networks for image processing using posits and ARM scalable vector extension. J. Real-Time Image Process. 17(3), 759–771 (2020). https://doi.org/10.1007/s11554-020-00984-x

  2. Cococcioni, M., Rossi, F., Ruffaldi, E., Saponara, S.: Vectorizing posit operations on RISC-V for faster deep neural networks: experiments and comparison with ARM SVE. J. Neural Comput. Appl. 33, 575–585 (2021). https://doi.org/10.1007/s00521-021-05814-0

  3. Cococcioni, M., Rossi, F., Ruffaldi, E., Saponara, S.: Faster deep neural network image processing by using vectorized posit operations on a RISC-V processor, In: Real-Time Image Processing and Deep Learning 2021, Kehtarnavaz, N., Carlsohn, M.F. (Eds.,) International Society for Optics and Photonics. SPIE, vol. 11736, pp. 19–25 (2021). https://doi.org/10.1117/12.2586565

  4. Burgess, N., Milanovic, J., Stephens, N., Monachopoulos, K., Mansell, D.: Bfloat16 processing for neural networks. In: 2019 IEEE 26th Symposium on Computer Arithmetic (ARITH), pp. 88–91 (2019)

    Google Scholar 

  5. Koster, U., et al.: Flexpoint: an adaptive numerical format for efficient training of deep neural networks. In: Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017) (2017)

    Google Scholar 

  6. Popescu, V., Nassar, M., Wang, X., Tumer, E., Webb, T.: Flexpoint: predictive numerics for deep learning. In: Proceedings of the 25th IEEE Symposium on Computer Arithmetic (ARITH 2018), pp. 1–4 (2018)

    Google Scholar 

  7. Mellempudi, N., Srinivasan, S., Das, D., Kaul, B.: Mixed precision training with 8-bit floating point (2019)

    Google Scholar 

  8. Gustafson, J.L.: The End of Error: Unum Computing. Chapman and Hall/CRC (2015)

    Google Scholar 

  9. Gustafson, J.L.: A radical approach to computation with real numbers. Supercomput. Front. Innov. 3(2), 38–53 (2016)

    Google Scholar 

  10. Gustafson, J.L., Yonemoto, I.T.: Beating floating point at its own game: posit arithmetic. Supercomput. Front. Innov. 4(2), 71–86 (2017)

    Google Scholar 

  11. Cococcioni, M., Rossi, F., Ruffaldi, E., Saponara, S.: Novel arithmetics to accelerate machine learning classifiers in autonomous driving applications. In: Proceedings of the 26th IEEE International Conference on Electronics Circuits and Systems (ICECS 2019)

    Google Scholar 

  12. Cococcioni, M., Rossi, F., Ruffaldi, E., Saponara, S.: A fast approximation of the hyperbolic tangent when using posit numbers and its application to deep neural networks. In: Saponara, S., De Gloria, A. (eds.) ApplePies 2019. LNEE, vol. 627, pp. 213–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37277-4_25

    Chapter  Google Scholar 

  13. Cococcioni, M, Ruffaldi, E, Saponara, S.: Exploiting posit arithmetic for deep neural networks in autonomous driving applications. In: 2018 International Conference of Electrical and Electronic Technologies for Automotive, pp. 1–6. IEEE (2018)

    Google Scholar 

  14. Carmichael, Z., Langroudi, H.F., Khazanov, C., Lillie, J., Gustafson, J.L., Kudithipudi, D.: Conference exhibition (DATE), pp. 1421–1426. IEEE (2019)

    Google Scholar 

  15. Langroudi, H.F., Carmichael, Z., Gustafson, J.L., Kudithipudi, D.: Positnn framework: tapered precision deep learning inference for the edge. In: 2019 IEEE Space Computing Conference (SCC), pp. 53–59. IEEE (2019)

    Google Scholar 

  16. Cococcioni, M., Rossi, F., Ruffaldi, E., Saponara, S., de Dinechin, B.D.: Novel arithmetics in deep neural networks signal processing for autonomous driving: challenges and opportunities. IEEE Signal Processing Magazine. 24, 38(1), 97–110 (2020)

    Google Scholar 

  17. Cococcioni, M., Rossi, F., Ruffaldi, E., Saponara, S.: Fast approximations of activation functions in deep neural networks when using posit arithmetic, Sensors, 20(5) (2020). www.mdpi.com/1424-8220/20/5/1515

  18. Fujitsu Processor A64FX. www.fujitsu.com/global/products/computing/servers/supercomputer/a64fx/ Accessed 4 June (2021)

  19. European Processor Initiative, an H2020 project. www.european-processor-initiative.eu/ (2019)

Download references

Acknowledgments

Work partially supported by H2020 projects (EPI grant no. 826647, https://www.european-processor-initiative.eu and TEXTAROSSA grant no. 956831, https://textarossa.eu) and partially by the Italian Ministry of Education and Research (MIUR) in the framework of the CrossLab project (Departments of Excellence). We thank the personnel of the Green DataCenter of the University of Pisa (https://start.unipi.it/en/computingunipi). In particular, we thank Prof. P. Ferragina, Dr. M. Davini and Dr S. Suin, for having provided us with the computational resources that have been used in the experimental section.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cococcioni, M., Rossi, F., Ruffaldi, E., Saponara, S. (2022). Experimental Results of Vectorized Posit-Based DNNs on a Real ARM SVE High Performance Computing Machine. In: Saponara, S., De Gloria, A. (eds) Applications in Electronics Pervading Industry, Environment and Society. ApplePies 2021. Lecture Notes in Electrical Engineering, vol 866. Springer, Cham. https://doi.org/10.1007/978-3-030-95498-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95498-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95497-0

  • Online ISBN: 978-3-030-95498-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics