Abstract
Ontology languages, based on Description Logics, and nonmonotonic rule languages are two major formalisms for the representation of expressive knowledge and reasoning with it, that build on fundamentally different ideas and formal underpinnings. Within the Semantic Web initiative, driven by the World Wide Web Consortium, standardized languages for these formalisms have been developed that allow their usage in knowledge-intensive applications integrating increasing amounts of data on the Web. Often, such applications require the advantages of both these formalisms, but due to their inherent differences, the integration is a challenging task. In this course, we review the two formalisms and their characteristics and show different ways of achieving their integration. We also discuss an available tool based on one such integration with favorable properties, such as polynomial data complexity for query answering when standard inference is polynomial in the used ontology language.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
Please note that often also function symbols are introduced in the literature of LP, but since they jeopardize decidability of reasoning, and usually are not considered in integrations of ontologies and nonmonotonic rules, we do omit them here.
- 5.
This is adapted from https://hts.usitc.gov/.
- 6.
Classical negation is also allowed, but we simplify here for the sake of presentation.
- 7.
- 8.
The source code can be obtained at https://github.com/NoHRReasoner/NoHR.
- 9.
- 10.
- 11.
- 12.
References
Alberti, M., Knorr, M., Gomes, A.S., Leite, J., Gonçalves, R., Slota, M.: Normative systems require hybrid knowledge bases. In: van der Hoek, W., Padgham, L., Conitzer, V., Winikoff, M. (eds.) Proceedings of AAMAS, pp. 1425–1426. IFAAMAS (2012)
Alferes, J.J., Knorr, M., Swift, T.: Query-driven procedures for hybrid MKNF knowledge bases. ACM Trans. Comput. Log. 14(2), 1–43 (2013)
Alviano, M., et al.: The ASP system DLV2. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 215–221. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61660-5_19
Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The \(DL\)-\(Lite\) family and relations. J. Artif. Intell. Res. (JAIR) 36, 1–69 (2009)
Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 3rd edn. Cambridge University Press, Cambridge (2010)
Baader, F., Brandt, S., Lutz, C.: Pushing the \(\cal{EL}\) envelope. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings of IJCAI, pp. 364–369. Professional Book Center (2005)
Baader, F., Hollunder, B.: Embedding defaults into terminological representation systems. J. Autom. Reason. 14, 149–180 (1995)
Baget, J., Leclère, M., Mugnier, M., Salvat, E.: On rules with existential variables: Walking the decidability line. Artif. Intell. 175(9–10), 1620–1654 (2011)
Bajraktari, L., Ortiz, M., Simkus, M.: Combining rules and ontologies into clopen knowledge bases. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of AAAI, pp. 1728–1735. AAAI Press (2018)
Baral, C., Gelfond, M.: Logic programming and knowledge representation. J. Log. Program. 19(20), 73–148 (1994)
Beck, H., Dao-Tran, M., Eiter, T.: LARS: a logic-based framework for analytic reasoning over streams. Artif. Intell. 261, 16–70 (2018)
Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American, pp. 96–101, May 2001
Bonatti, P.A., Lutz, C., Wolter, F.: The complexity of circumscription in DLs. J. Artif. Intell. Res. (JAIR) 35, 717–773 (2009)
Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning. Elsevier, Amsterdam (2004)
Brewka, G., Ellmauthaler, S., Gonçalves, R., Knorr, M., Leite, J., Pührer, J.: Reactive multi-context systems: heterogeneous reasoning in dynamic environments. Artif. Intell. 256, 68–104 (2018)
Britz, K., Casini, G., Meyer, T., Moodley, K., Sattler, U., Varzinczak, I.: Principles of KLM-style defeasible description logics. ACM Trans. Comput. Log. 22(1), 1:1-1:46 (2021)
Calì, A., Gottlob, G., Lukasiewicz, T., Pieris, A.: Datalog+/-: a family of languages for ontology querying. In: de Moor, O., Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog 2.0 2010. LNCS, vol. 6702, pp. 351–368. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24206-9_20
Calimeri, F., et al.: Asp-core-2 input language format. Theory Pract. Log. Program. 20(2), 294–309 (2020)
Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M., Rodriguez-Muro, M., Xiao, G.: Ontop: answering SPARQL queries over relational databases. Semantic Web 8(3), 471–487 (2017)
Chen, W., Warren, D.S.: Tabled evaluation with delaying for general logic programs. J. ACM 43(1), 20–74 (1996)
Costa, N., Knorr, M., Leite, J.: Next step for NoHR: OWL 2 QL. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 569–586. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25007-6_33
Dao-Tran, M., Eiter, T.: Streaming multi-context systems. In: IJCAI, pp. 1000–1007. ijcai.org (2017)
Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation as failure. ACM Trans. Comput. Logic 3(2), 177–225 (2002)
Eiter, T., Fink, M., Ianni, G., Krennwallner, T., Redl, C., Schüller, P.: A model building framework for answer set programming with external computations. TPLP 16(4), 418–464 (2016)
Eiter, T., Ianni, G., Krennwallner, T., Polleres, A.: Rules and ontologies for the semantic web. In: Baroglio, C., et al. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 1–53. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85658-0_1
Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R.: Well-founded semantics for description logic programs in the semantic web. ACM Trans. Comput. Logic. 12, 11:1-11:41 (2011)
Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. Artif. Intell. 172(12–13), 1495–1539 (2008)
Eiter, T., Šimkus, M.: Linking open-world knowledge bases using nonmonotonic rules. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp. 294–308. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23264-5_25
Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: the potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011)
van Gelder, A.: The alternating fixpoint of logic programs with negation. In: Principles of Database Systems, pp. 1–10. ACM Press (1989)
van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. J. ACM 38(3), 620–650 (1991)
Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9, 365–385 (1991)
Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Semantic characterization of rational closure: from propositional logic to description logics. Artif. Intell. 226, 1–33 (2015)
Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: an OWL 2 reasoner. J. Autom. Reason. 53(3), 245–269 (2014)
Gottlob, G., Hernich, A., Kupke, C., Lukasiewicz, T.: Equality-friendly well-founded semantics and applications to description logics. In: AAAI. AAAI Press (2012)
Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining logic programs with description logic. In: Hencsey, G., White, B., Chen, Y.R., Kovács, L., Lawrence, S. (eds.) Proceedings of WWW, pp. 48–57. ACM (2003)
Haarslev, V., Hidde, K., Möller, R., Wessel, M.: The RacerPro knowledge representation and reasoning system. Seman. Web J. (2011). http://www.semantic-web-journal.net/issues. (to appear)
Harris, S., Seaborne, A. (eds.): SPARQL 1.1 Query Language. W3C Working Group Note 21 March 2013 (2013). https://www.w3.org/TR/sparql11-query/
Hitzler, P.: A review of the semantic web field. Commun. ACM 64(2), 76–83 (2021)
Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.): OWL 2 Web Ontology Language: Primer (Second Edition). W3C, Cambridge(2012)
Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman & Hall/CRC, Boca Raton (2009)
Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible \(\cal{SROIQ}\). In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings of KR, pp. 57–67. AAAI Press (2006)
Ivanov, V., Knorr, M., Leite, J.: A query tool for \(\cal{EL}\) with Non-monotonic Rules. In: Alani, J., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 216–231. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41335-3_14
Kaminski, T., Knorr, M., Leite, J.: Efficient paraconsistent reasoning with ontologies and rules. In: Yang, Q., Wooldridge, M.J. (eds.) Proceedings of IJCAI, pp. 3098–3105. AAAI Press (2015)
Kasalica, V., Gerochristos, I., Alferes, J.J., Gomes, A.S., Knorr, M., Leite, J.: Telco network inventory validation with nohr. In: Balduccini, M., Lierler, Y., Woltran, S. (eds.) Logic Programming and Nonmonotonic Reasoning. LPNMR 2019. Lecture Notes in Computer Science, 11481, pp. 18–331. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20528-7_2
Kazakov, Y.: \(\cal{RIQ}\) and \(\cal{SROIQ}\) are harder than \(\cal{SHOIQ}\). In: Brewka, G., Lang, J. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Eleventh International Conference, KR 2008, Sydney, Australia, September 16–19, 2008. AAAI Press (2008)
Kazakov, Y., Krötzsch, M., Simančík, F.: The incredible ELK: from polynomial procedures to efficient reasoning with \(\cal{EL}\) ontologies. J. Autom. Reason. 53, 1–61 (2013)
Knorr, M., Alferes, J.J., Hitzler, P.: Local closed world reasoning with description logics under the well-founded semantics. Artif. Intell. 175(9–10), 1528–1554 (2011)
Knorr, M., Hitzler, P., Maier, F.: Reconciling OWL and non-monotonic rules for the semantic web. In: Raedt, L.D., Bessiere, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., Lucas, P.J.F. (eds.) Proceedings of ECAI. Frontiers in Artificial Intelligence and Applications, vol. 242, pp. 474–479. IOS Press (2012)
Krisnadhi, A.A., Maier, F., Hitzler, P.: OWL and rules. In: Reasoning Web 2011, Springer Lecture Notes in Computer Science (2011). http://knoesis.wright.edu/faculty/pascal/resources/publications/OWL-Rules-2011.pdf (to appear)
Krisnadhi, A.A., Sengupta, K., Hitzler, P.: Local closed world semantics: Keep it simple, stupid! Technical report, Wright State University (2011). http://pascal-hitzler.de/resources/publications/GC-DLs.pdf
Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: Dbpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Semantic Web 6(2), 167–195 (2015)
Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Logic 7, 499–562 (2006)
Lifschitz, V.: Nonmonotonic databases and epistemic queries. In: Mylopoulos, J., Reiter, R. (eds.) Proceedings of IJCAI. Morgan Kaufmann (1991)
Lopes, C., Knorr, M., Leite, J.: NoHR: integrating XSB Prolog with the OWL 2 profiles and beyond. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 236–249. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61660-5_22
Lukumbuzya, S., Ortiz, M., Simkus, M.: Resilient logic programs: answer set programs challenged by ontologies. In: AAAI, pp. 2917–2924. AAAI Press (2020)
Lutz, C.: The complexity of conjunctive query answering in expressive description logics. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 179–193. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7_16
Magka, D., Krötzsch, M., Horrocks, I.: Computing stable models for nonmonotonic existential rules. In: IJCAI, pp. 1031–1038. IJCAI/AAAI (2013)
Minker, J., Seipel, D.: Disjunctive logic programming: a survey and assessment. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2407, pp. 472–511. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45628-7_18
Morgenstern, L., Welty, C., Boley, H., Hallmark, G. (eds.): RIF Primer (Second Edition). W3C Working Group Note 5 February 2013 (2013). https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL 2 Web Ontology Language: Profiles (Second Edition). W3C, Cambridge (2012)
Motik, B., Rosati, R.: Reconciling description logics and rules. J. ACM 57(5), 93–154 (2010)
Motik, B., Sattler, U., Studer, R.: Query-answering for OWL-DL with rules. J. Web Semant. 3(1), 41–60 (2005)
Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: RDFox: a highly-scalable RDF store. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 3–20. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6_1
Patel, C., et al.: Matching patient records to clinical trials using ontologies. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 816–829. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_59
Redl, C.: The DLVHEX system for knowledge representation: recent advances (system description). Theory Pract. Log. Program. 16(5–6), 866–883 (2016)
Rosati, R.: On the decidability and complexity of integrating ontologies and rules. J. Web Semant. 3(1), 41–60 (2005)
Rosati, R.: DL+Log: A tight integration of description logics and disjunctive datalog. In: Doherty, P., Mylopoulos, J., Welty, C. (eds.) Tenth International Conference on the Principles of Knowledge Representation and Reasoning, KR 2006, pp. 68–78. AAAI Press (2006)
Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 4th edn. Pearson, London (2020)
Schreiber, G., Raimond, Y. (eds.): RDF 1.1 Primer. W3C Working Group Note 24 June 2014 (2014). available at https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. Web Semant. 5, 51–53 (2007)
Slota, M., Leite, J.: Towards closed world reasoning in dynamic open worlds. TPLP 10(4–6), 547–563 (2010)
Slota, M., Leite, J., Swift, T.: Splitting and updating hybrid knowledge bases. TPLP 11(4–5), 801–819 (2011)
Slota, M., Leite, J., Swift, T.: On updates of hybrid knowledge bases composed of ontologies and rules. Artif. Intell. 229, 33–104 (2015)
Steigmiller, A., Liebig, T., Glimm, B.: Konclude: system description. J. Web Sem. 27, 78–85 (2014)
Sterling, L., Shapiro, E.: The Art of Prolog - Advanced Programming Techniques, 2nd edn. MIT Press, Cambridge (1994)
Swift, T., Warren, D.S.: XSB: extending prolog with tabled logic programming. Theory Pract. Log. Program. 12(1–2), 157–187 (2012)
Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries in database and logic programming systems. TPLP 8(2), 129–165 (2008)
Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer, Heidelberg (2006). https://doi.org/10.1007/11814771_26
Wang, Y., You, J.H., Yuan, L.Y., Shen, Y.D.: Loop formulas for description logic programs. Theory Pract. Logic Program. 10(4–6), 531–545 (2010)
Xiao, G., et al.: Ontology-based data access: a survey. In: IJCAI, pp. 5511–5519. ijcai.org (2018)
Acknowledgement
The author thanks Ricardo Gonçalves and the anonymous reviewers for helpful feedback and acknowledges partial support by FCT projects RIVER (PTDC/CCI-COM/30952/2017) and NOVA LINCS (UIDB/04516/2020).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Knorr, M. (2022). On Combining Ontologies and Rules. In: Šimkus, M., Varzinczak, I. (eds) Reasoning Web. Declarative Artificial Intelligence . Reasoning Web 2021. Lecture Notes in Computer Science(), vol 13100. Springer, Cham. https://doi.org/10.1007/978-3-030-95481-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-95481-9_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-95480-2
Online ISBN: 978-3-030-95481-9
eBook Packages: Computer ScienceComputer Science (R0)