Skip to main content

Optimisation of a Workpiece Clamping Position with Reinforcement Learning for Complex Milling Applications

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2021)

Abstract

Fine-tuning and optimisation of production processes in manufacturing are often conducted with the help of algorithms from the field of Operations Research (OR) or directly by human experts. Machine Learning (ML) methods demonstrate outstanding results in tackling optimisation tasks within the research field referred to as Neural Combinatorial Optimisation (NCO). This opens multiple opportunities in manufacturing for learning-based optimisation solutions. In this work, we show a successful application of Reinforcement Learning (RL) to the task of workpiece (WP) clamping position and orientation optimisation for milling processes. A carefully selected clamping position and orientation of a WP are essential for minimising machine tool wear and energy consumption. With the example of 3- and 5-axis milling, we demonstrate that a trained RL agent can successfully find a near-optimal orientation and positioning for new, previously unseen WPs. The achieved solution quality is comparable to alternative optimisation solutions relying on Simulated Annealing (SA) and Genetic Algorithms (GA) while requiring orders of magnitude fewer optimisation iterations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhinge, R., et al.: An intelligent machine monitoring system for energy prediction using a Gaussian Process regression. In: Lin, J. (ed.) 2014 IEEE International Conference on Big Data (Big Data 2014), pp. 978–986. IEEE, Piscataway (2014). https://doi.org/10.1109/BigData.2014.7004331

  2. Brockman, G., et al.: OpenAI Gym (2016). https://arxiv.org/pdf/1606.01540

  3. Campatelli, G., Scippa, A., Lorenzini, L., Sato, R.: Optimal workpiece orientation to reduce the energy consumption of a milling process. Int. J. Precis. Eng. Manuf. Green Technol. 2(1), 5–13 (2015)

    Article  Google Scholar 

  4. Cioffi, R., Travaglioni, M., Piscitelli, G., Petrillo, A., de Felice, F.: Artificial intelligence and machine learning applications in smart production: progress, trends, and directions. Sustainability 12(2), 492 (2020). https://doi.org/10.3390/su12020492

    Article  Google Scholar 

  5. Du Preez, A., Oosthuizen, G.A.: Machine learning in cutting processes as enabler for smart sustainable manufacturing. Procedia Manuf. 33, 810–817 (2019). https://doi.org/10.1016/j.promfg.2019.04.102

    Article  Google Scholar 

  6. Gandomi, A.H. (ed.): Metaheuristic Applications in Structures and Infrastructures, 1st edn. Elsevier Insights, Elsevier, London (2013)

    Google Scholar 

  7. Ke, G., et al.: LightGBM: A Highly Efficient Gradient Boosting Decision Tree (2017, undefined)

    Google Scholar 

  8. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor (2018). http://arxiv.org/pdf/1801.01290v2

  9. Hayes, G.: mlrose: Machine Learning, Randomized Optimization and SEarch package for Python (2019). https://github.com/gkhayes/mlrose

  10. Hill, A., et al.: Stable Baselines (2018)

    Google Scholar 

  11. Kothuru, A., Nooka, S.P., Liu, R.: Application of audible sound signals for tool wear monitoring using machine learning techniques in end milling. Int. J. Adv. Manuf. Technol. 95, 3797–3808 (2017). https://doi.org/10.1007/s00170-017-1460-1

    Article  Google Scholar 

  12. Merkel, D.: Docker: lightweight linux containers for consistent development and deployment. Linux J. 2014(239), 2 (2014)

    Google Scholar 

  13. Meyes, R., et al.: Interdisciplinary data driven production process analysis for the internet of production. Procedia Manufa. 26, 1065–1076 (2018). https://doi.org/10.1016/j.promfg.2018.07.143

    Article  Google Scholar 

  14. Mitchell, M.: An Introduction to Genetic Algorithms. Complex Adaptive Systems. MIT, Cambridge and London (1996)

    Google Scholar 

  15. Nti, I.K., Adekoya, A.F., Weyori, B.A., Nyarko-Boateng, O.: Applications of artificial intelligence in engineering and manufacturing: a systematic review. J. Intell. Manuf. 1–21 (2021). https://doi.org/10.1007/s10845-021-01771-6

  16. Pol, S., Baer, S., Turner, D., Samsonov, V., Meisen, T.: Global reward design for cooperative agents to achieve flexible production control under real-time constraints. In: Proceedings of the 23rd International Conference on Enterprise Information Systems. SCITEPRESS - Science and Technology Publications (2021). https://doi.org/10.5220/0010455805150526

  17. Rangarajan, A., Dornfeld, D.: Efficient tool paths and part orientation for face milling. CIRP Ann. 53(1), 73–76 (2004). https://doi.org/10.1016/S0007-8506(07)60648-9

    Article  Google Scholar 

  18. Samsonov, V., Enslin, C., Köpken, H.G., Baer, S., Lütticke, D.: Using reinforcement learning for optimization of a workpiece clamping position in a machine tool. In: Proceedings of the 22nd International Conference on Enterprise Information Systems, pp. 506–514. SCITEPRESS - Science and Technology Publications (2020). https://doi.org/10.5220/0009354105060514

  19. Serin, G., Sener, B., Ozbayoglu, A.M., Unver, H.O.: Review of tool condition monitoring in machining and opportunities for deep learning. Int. J. Adv. Manuf. Technol. 109(3–4), 953–974 (2020)

    Article  Google Scholar 

  20. van Laarhoven, P.J.M., Aarts, E.H.L.: Simulated annealing. In: van Laarhoven, P.J.M., Aarts, E.H.L. (eds.) Simulated Annealing: Theory and Applications, pp. 7–15. Springer, Dordrecht (1987). https://doi.org/10.1007/978-94-015-7744-1_2

    Chapter  MATH  Google Scholar 

  21. Wang, J., Yan, J., Li, C., Gao, R.X., Zhao, R.: Deep heterogeneous GRU model for predictive analytics in smart manufacturing: application to tool wear prediction. Comput. Ind. 111, 1–14 (2019). https://doi.org/10.1016/j.compind.2019.06.001

    Article  Google Scholar 

  22. Wu, D., Jennings, C., Terpenny, J., Gao, R.X., Kumara, S.: A comparative study on machine learning algorithms for smart manufacturing: tool wear prediction using random forests. J. Manuf. Sci. Eng. 139(7) (2017). https://doi.org/10.1115/1.4036350

  23. Xanthopoulos, A.S., Kiatipis, A., Koulouriotis, D.E., Stieger, S.: Reinforcement learning-based and parametric production-maintenance control policies for a deteriorating manufacturing system. IEEE Access 6, 576–588 (2018). https://doi.org/10.1109/ACCESS.2017.2771827

    Article  Google Scholar 

  24. Yuan, X., Li, L., Wang, Y., Yang, C., Gui, W.: Deep learning for quality prediction of nonlinear dynamic processes with variable attention-based long short-term memory network. Can. J. Chem. Eng. 98(6), 1377–1389 (2020). https://doi.org/10.1002/cjce.23665

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Samsonov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Enslin, C., Samsonov, V., Köpken, HG., Bär, S., Lütticke, D. (2022). Optimisation of a Workpiece Clamping Position with Reinforcement Learning for Complex Milling Applications. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2021. Lecture Notes in Computer Science(), vol 13164. Springer, Cham. https://doi.org/10.1007/978-3-030-95470-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95470-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95469-7

  • Online ISBN: 978-3-030-95470-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics