Skip to main content

New Optimization Approaches in Malware Traffic Analysis

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2021)

Abstract

Machine learning is rapidly becoming one of the most important technology for malware traffic detection, since the continuous evolution of malware requires a constant adaptation and the ability to generalize [20]. However, network traffic datasets are usually oversized and contain redundant and irrelevant information, and this may dramatically increase the computational cost and decrease the accuracy of most classifiers, with the risk to introduce further noise.

We propose two novel dataset optimization strategies which exploit and combine several state-of-the-art approaches in order to achieve an effective optimization of the network traffic datasets used to train malware detectors. The first approach is a feature selection technique based on mutual information measures and sensibility enhancement. The second is a dimensional reduction technique based autoencoders. Both these approaches have been experimentally applied on the MTA-KDD’19 dataset, and the optimized results evaluated and compared using a Multi Layer Perceptron as machine learning model for malware detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akadi, A.E., Ouardighi, A.E., Aboutajdine, D.: A powerful feature selection approach based on mutual information (2008)

    Google Scholar 

  2. Balagani, K.S., Phoha, V.V.: On the feature selection criterion based on an approximation of multidimensional mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1342–1343 (2010)

    Article  Google Scholar 

  3. Battiti, R.: Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Netw. 5, 537–550 (1994). https://doi.org/10.1109/72.298224

    Article  Google Scholar 

  4. Bennasar, M., Hicks, Y., Setchi, R.: Feature selection using joint mutual information maximisation. Expert Syst. Appl. 42(22), 8520–8532 (2015). https://doi.org/10.1016/j.eswa.2015.07.007

    Article  Google Scholar 

  5. Borges, H.B., Nievola, J.C.: Comparing the dimensionality reduction methods in gene expression databases. Expert Syst. Appl. 39(12), 10780–10795 (2012)

    Article  Google Scholar 

  6. Brown, G., Pocock, A., Zhao, M.J., Luján, M.: Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. J. Mach. Learn. Res. 13, 27–66 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Colquhoun, D.: An investigation of the false discovery rate and the misinterpretation of p-values. Roy. Soc. Open Sci. 1(3) (2014). https://doi.org/10.1098/rsos.140216

  8. Fleuret, F.: Fast binary feature selection with conditional mutual information. J. Mach. Learn. Res. 5, 1531–1555 (2004)

    MathSciNet  MATH  Google Scholar 

  9. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning. STS, vol. 103. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7138-7

    Book  MATH  Google Scholar 

  10. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.: Feature extraction: foundations and applications (2006)

    Google Scholar 

  11. Hamon, J.: Optimisation combinatoire pour la sélection de variables en régression en grande dimension : Application en génétique animale. (combinatorial optimization for variable selection in high dimensional regression: Application in animal genetic) (2013)

    Google Scholar 

  12. Han, K., Li, C., Shi, X.: Autoencoder feature selector. ArXiv abs/1710.08310 (2017)

    Google Scholar 

  13. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  14. Hinton, G.E., Zemel, R.S.: Autoencoders, minimum description length and helmholtz free energy. In: Proceedings of the 6th International Conference on Neural Information Processing Systems, pp. 3–10. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    Google Scholar 

  15. Huang, Y., Xu, D., Nie, F.: Semi-supervised dimension reduction using trace ratio criterion. IEEE Trans. Neural Netw. Learn. Syst. 23(3), 519–526 (2012). https://doi.org/10.1109/TNNLS.2011.2178037

    Article  Google Scholar 

  16. Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14, 55–63 (1968). https://doi.org/10.1109/TIT.1968.1054102

    Article  Google Scholar 

  17. Letteri, I.: MTA-KDD’19 dataset (2019). https://github.com/IvanLetteri/MTA-KDD-19

  18. Letteri, I., Di Cecco, A., Della Penna, G.: Optimized MTA-KDD’19 datasets (2020). https://github.com/IvanLetteri/RRwOptimizedMTAKDD19

  19. Letteri, I., Della Penna, G., Caianiello, P.: Feature selection strategies for HTTP botnet traffic detection. In: 2019 IEEE European Symposium on Security and Privacy Workshops, EuroS&P Workshops 2019, Stockholm, Sweden, 17–19 June 2019, pp. 202–210. IEEE (2019). https://doi.org/10.1109/EuroSPW.2019.00029

  20. Letteri, I., Della Penna, G., De Gasperis, G.: Botnet detection in software defined networks by deep learning techniques. In: Castiglione, A., Pop, F., Ficco, M., Palmieri, F. (eds.) CSS 2018. LNCS, vol. 11161, pp. 49–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01689-0_4

    Chapter  Google Scholar 

  21. Letteri, I., Della Penna, G., De Gasperis, G.: Security in the internet of things: botnet detection in software-defined networks by deep learning techniques. Int. J. High Perf. Comput. Netw. 15(3–4), 170–182 (2020). https://doi.org/10.1504/IJHPCN.2019.106095

    Article  Google Scholar 

  22. Letteri, I., Della Penna, G., Di Vita, L., Grifa, M.T.: Mta-kdd’19: a dataset for malware traffic detection. In: Loreti, M., Spalazzi, L. (eds.) Proceedings of the Fourth Italian Conference on Cyber Security, Ancona, Italy, 4–7 February 2020, CEUR Workshop Proceedings, vol. 2597, pp. 153–165. CEUR-WS.org (2020). http://ceur-ws.org/Vol-2597/paper-14.pdf

  23. Lu, Q., Qiao, X.: Sparse fisher’s linear discriminant analysis for partially labeled data. Stat. Anal. Data Min. 11, 17–31 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Numpy: numpy.random.uniform. https://numpy.org/numpy.random.uniform.html

  25. Pasunuri, R., Venkaiah, V.C.: A computationally efficient data-dependent projection for dimensionality reduction. In: Bansal, J.C., Gupta, M.K., Sharma, H., Agarwal, B. (eds.) ICCIS 2019. LNNS, vol. 120, pp. 339–352. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-3325-9_26

    Chapter  Google Scholar 

  26. Phuong, T.M., Lin, Z., Altman, R.B.: Choosing SNPs using feature selection. In: Proceedings, IEEE Computational Systems Bioinformatics Conference, pp. 301–309 (2005). https://doi.org/10.1109/csb.2005.22

  27. Scikit-Learn https://scikit-learn.org

  28. Shahana, A.H., Preeja, V.: Survey on feature subset selection for high dimensional data. In: 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), pp. 1–4 (2016)

    Google Scholar 

  29. Sorzano, C.O.S., Vargas, J., Pascual-Montano, A.D.: A survey of dimensionality reduction techniques. ArXiv abs/1403.2877 (2014)

    Google Scholar 

  30. Wang, G., Lochovsky, F.: Feature selection with conditional mutual information maximin in text categorization, pp. 342–349 (2004). https://doi.org/10.1145/1031171.1031241

  31. Wang, L., Lei, Y., Zeng, Y., Tong, l., Yan, B.: Principal feature analysis: a multivariate feature selection method for fMRI data. Comput. Math. Methods Med. 2013, 645921 (2013). https://doi.org/10.1155/2013/645921

  32. Wang, S., Ding, Z., Fu, Y.: Feature selection guided auto-encoder. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, pp. 2725–2731. AAAI Press (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Letteri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Letteri, I., Di Cecco, A., Della Penna, G. (2022). New Optimization Approaches in Malware Traffic Analysis. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2021. Lecture Notes in Computer Science(), vol 13163. Springer, Cham. https://doi.org/10.1007/978-3-030-95467-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95467-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95466-6

  • Online ISBN: 978-3-030-95467-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics