Skip to main content

The PRISMA Hand II: A Sensorized Robust Hand for Adaptive Grasp and In-Hand Manipulation

  • Conference paper
  • First Online:
Robotics Research (ISRR 2019)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 20))

Included in the following conference series:

Abstract

Although substantial progresses have been made in building anthropomorphic robotic hands, lack of mechanical robustness, dexterity and force sensation still restrains wide adoption of robotic prostheses. This paper presents the design and preliminary evaluation of the PRISMA hand II, which is a mechanically robust anthropomorphic hand developed at the PRISMA Lab of University of Naples Federico II. The hand is highly underactuated, as the 19 finger joints are driven by three motors via elastic tendons. Nevertheless, the hand can performs not only adaptive grasps but also in-hand manipulation. The hand uses rolling contact joints, which is compliant in multiple directions. Force sensor are integrated to each fingertip in order to provide force feedback during grasping and manipulation. Preliminary experiments have been performed to evaluate the hand. Results show that the hand can perform various grasps and in-hand manipulation, while the structure can withstand severe disarticulation. This suggests that the proposed design can be a viable solution for robust and dexterous prosthetic hands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Catalano, M.G., Grioli, G., Farnioli, E., Serio, A., Piazza, C., Bicchi, A.: Adaptive synergies for the design and control of the Pisa/IIT SoftHand. Int. J. Robot. Res. 33(5), 768–782 (2014)

    Article  Google Scholar 

  2. Xu, K., Liu, H., Liu, Z., Du, Y., Zhu, X.: A single-actuator prosthetic hand using a continuum differential mechanism. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 6457–6462. IEEE (2015)

    Google Scholar 

  3. Lenzi, T., Lipsey, J., Sensinger, J.W.: The RIC Arm—a small anthropomorphic transhumeral prosthesis. IEEE/ASME Trans. Mechatron. 21(6), 2660–2671 (2016)

    Article  Google Scholar 

  4. Controzzi, M., Clemente, F., Barone, D., Ghionzoli, A., Cipriani, C.: The SSSA-MyHand: a dexterous lightweight myoelectric hand prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 25(5), 459–468 (2017)

    Article  Google Scholar 

  5. Xu, K., Liu, H., Zhang, Z., Zhu, X.: Wrist-powered partial hand prosthesis using a continuum whiffle tree mechanism: a case study. IEEE Trans. Neural Syst. Rehabil. Eng. 26(3), 609–618 (2018)

    Article  Google Scholar 

  6. Biddiss, E.A., Chau, T.T.: Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet. Orthot. Int. 31(3), 236–257 (2007)

    Article  Google Scholar 

  7. Østlie, K., Lesjø, I.M., Franklin, R.J., Garfelt, B., Skjeldal, O.H., Magnus, P.: Prosthesis rejection in acquired major upper-limb amputees: a population-based survey. Disabil. Rehabil. Assist. Technol. 7(4), 294–303 (2012)

    Google Scholar 

  8. Bhaskaranand, K., Bhat, A.K., Acharya, K.N.: Prosthetic rehabilitation in traumatic upper limb amputees (an Indian perspective). Arch. Orthop. Trauma Surg. 123(7), 363–366 (2003)

    Article  Google Scholar 

  9. Cordella, F., et al.: Literature review on needs of upper limb prosthesis users. Front. Neurosci. 10, 209 (2016)

    Article  Google Scholar 

  10. Ren, Z., Kashiri, N., Zhou, C., Tsagarakis, N.G.: HERI II: a robust and flexible robotic hand based on modular finger design and under actuation principles. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1449–1455, October 2018

    Google Scholar 

  11. Grebenstein, M., et al.: The hand of the DLR hand arm system: designed for interaction. Int. J. Robot. Res. 31(13), 1531–1555 (2012)

    Article  Google Scholar 

  12. Choi, K.Y., Akhtar, A., Bretl, T.: A compliant four-bar linkage mechanism that makes the fingers of a prosthetic hand more impact resistant. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 6694–6699. IEEE (2017)

    Google Scholar 

  13. Dollar, A.M., Howe, R.D.: The highly adaptive SDM hand: design and performance evaluation. Int. J. Robot. Res. 29(5), 585–597 (2010)

    Article  Google Scholar 

  14. Odhner, L.U., et al.: A compliant, underactuated hand for robust manipulation. Int. J. Robot. Res. 33(5), 736–752 (2014)

    Article  Google Scholar 

  15. Lotti, F., Tiezzi, P., Vassura, G., Biagiotti, L., Palli, G., Melchiorri, C.: Development of UB hand 3: early results. In: ICRA, pp. 4488–4493 (2005)

    Google Scholar 

  16. Potratz, J., Yang, J., Abdel-Malek, K., Pitarch, E.P., Grosland, N.: A light weight compliant hand mechanism with high degrees of freedom. J. Biomech. Eng. 127(6), 934–945 (2005)

    Article  Google Scholar 

  17. Makino, S., Kawaharazuka, K., Kawamura, M., Asano, Y., Okada, K., Inaba, M.: High-power, flexible, robust hand: development of musculoskeletal hand using machined springs and realization of self-weight supporting motion with humanoid. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1187–1192. IEEE (2017)

    Google Scholar 

  18. Zhao, H., O’Brien, K., Li, S., Shepherd, R.F.: Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci. Robot. 1(1), eaai7529 (2016)

    Google Scholar 

  19. Fras, J., Althoefer, K.: Soft biomimetic prosthetic hand: Design, manufacturing and preliminary examination. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–6. IEEE (2018)

    Google Scholar 

  20. Zhou, J., Yi, J., Chen, X., Liu, Z., Wang, Z.: BCL-13: a 13-DOF soft robotic hand for dexterous grasping and in-hand manipulation. IEEE Robot. Autom. Lett. 3(4), 3379–3386 (2018)

    Article  Google Scholar 

  21. Schulz, S., Pylatiuk, C., Reischl, M., Martin, J., Mikut, R., Bretthauer, G.: A hydraulically driven multifunctional prosthetic hand. Robotica 23(3), 293–299 (2005)

    Article  Google Scholar 

  22. Lee, D.-H., Park, J.-H., Park, S.-W., Baeg, M.-H., Bae, J.-H.: KITECH-hand: a highly dexterous and modularized robotic hand. IEEE/ASME Trans. Mechatron. 22(2), 876–887 (2017)

    Article  Google Scholar 

  23. Xu, K., Liu, H.: Continuum differential mechanisms and their applications in gripper designs. IEEE Trans. Robot. 32(3), 754–762 (2016)

    Article  MathSciNet  Google Scholar 

  24. Odhner, L.U., Dollar, A.M.: Stable, open-loop precision manipulation with underactuated hands. Int. J. Robot. Res. 34(11), 1347–1360 (2015)

    Article  Google Scholar 

  25. Rojas, N., Ma, R.R., Dollar, A.M.: The GR2 gripper: an underactuated hand for open-loop in-hand planar manipulation. IEEE Trans. Robot. 32(3), 763–770 (2016)

    Article  Google Scholar 

  26. Ward-Cherrier, B., Rojas, N., Lepora, N.F.: Model-free precise in-hand manipulation with a 3D-printed tactile gripper. IEEE Robot. Autom. Lett. 2(4), 2056–2063 (2017)

    Article  Google Scholar 

  27. Ma, R.R., Bircher, W.G., Dollar, A.M.: Toward robust, whole-hand caging manipulation with underactuated hands. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1336–1342. IEEE (2017)

    Google Scholar 

  28. Santina, C.D., Piazza, C., Grioli, G., Catalano, M.G., Bicchi, A.: Toward dexterous manipulation with augmented adaptive synergies: the Pisa/IIT SoftHand 2. IEEE Trans. Robot. 34(5), 1141–1156 (2018)

    Article  Google Scholar 

  29. Liu, H., Zhang, Z., Zhu, X., Xu, K.: A single-actuator gripper with a working mode switching mechanism for grasping and rolling manipulation. In: 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 359–364. IEEE (2018)

    Google Scholar 

  30. Liu, H., Xu, K., Siciliano, B., Ficuciello, F.: The mero hand: a mechanically robust anthropomorphic prosthetic hand using novel compliant rolling contact joint. In: 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE

    Google Scholar 

  31. Santello, M., Flanders, M., Soechting, J.F.: Postural hand synergies for tool use. J. Neurosci. 18(23), 10105–10115 (1998)

    Article  Google Scholar 

  32. Ficuciello, F., Federico, A., Lippiello, V., Siciliano, B.: Synergies evaluation of the SCHUNK S5FH for grasping control. In: Lenarčič, J., Merlet, J.P. (eds.) Advances in Robot Kinematics 2016. Springer Proceedings in Advanced Robotics, vol. 4, pp. 225–233. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-56802-7_24

  33. Ficuciello, F., Carloni, R., Visser, L., Stramigioli, S.: Port-Hamiltonian modeling for soft-finger manipulation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, pp. 4281–4286 (2010)

    Google Scholar 

  34. Ficuciello, F., Palli, G., Melchiorri, C., Siciliano, B.: Planning and control during reach to grasp using the three predominant UB Hand IV postural synergies. In: Proceedings of the IEEE International Conference on Robotics and Automation, Saint Paul, pp. 2255–2260 (2012)

    Google Scholar 

  35. Ficuciello, F., Zaccara, D., Siciliano, B.: Synergy-based policy improvement with path integrals for anthropomorphic hands. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Daejeon, Korea, pp. 1940–1945 (2016)

    Google Scholar 

  36. Gabiccini, M., Bicchi, A.: On the role of hand synergies in the optimal choice of grasping forces. In: Proceedings of Robotics: Science and Systems, Zaragoza (2010)

    Google Scholar 

  37. Ficuciello, F., Palli, G., Melchiorri, C., Siciliano, B.: A model-based strategy for mapping human grasps to robotic hands using synergies. In: Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Wollongong, Australia, pp. 1737–1742 (2013)

    Google Scholar 

  38. Ficuciello, F., Palli, G., Melchiorri, C., Siciliano, B.: Postural synergies and neural network for autonomous grasping: a tool for dextrous prosthetic and robotic hands. In: Pons, J., Torricelli, D., Pajaro, M. (eds.) Converging Clinical and Engineering Research on Neurorehabilitation. Biosystems & Biorobotics, vol. 1, pp. 467–480. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-34546-3_76

  39. Ficuciello, F.: Synergy-based control of underactuated anthropomorphic hands. IEEE Trans. Ind. Inform. 15, 1144–1152 (2019)

    Article  Google Scholar 

  40. Cerulo, I., Ficuciello, F., Lippiello, V., Siciliano, B.: Teleoperation of the SCHUNK S5FH under-actuated anthropomorphic hand using human hand motion tracking. Robot. Auton. Syst. 89, 75–84 (2017)

    Article  Google Scholar 

  41. Dechev, N., Cleghorn, W., Naumann, S.: Multiple finger, passive adaptive grasp prosthetic hand. Mech. Mach. Theory 36(10), 1157–1173 (2001)

    Article  Google Scholar 

  42. Cannon, J.R., Lusk, C.P., Howell, L.L.: Compliant rolling-contact element mechanisms. In: ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 3–13. American Society of Mechanical Engineers (2005)

    Google Scholar 

  43. Hillberry, B.M., Hall Jr., A.S.: Rolling contact joint, 13 January 1976. US Patent 3,932,045

    Google Scholar 

  44. Ruoff, C.F.: Rolling contact robot joint, 17 December 1985. US Patent 4,558,911

    Google Scholar 

  45. Bartolozzi, C., Natale, L., Nori, F., Metta, G.: Robots with a sense of touch. Nat. Mater. 15(9), 921 (2016)

    Article  Google Scholar 

  46. Wang, H., Totaro, M., Beccai, L.: Toward perceptive soft robots: progress and challenges. Adv. Sci. 5(9), 1800541 (2018)

    Article  Google Scholar 

  47. Jamone, L., Natale, L., Metta, G., Sandini, G.: Highly sensitive soft tactile sensors for an anthropomorphic robotic hand. IEEE Sens. J. 15(8), pp. 4226–4233 (2015). Inductive

    Google Scholar 

  48. Wang, H., Totaro, M., Blandin, A.A., Beccai, L.: A wireless inductive sensing technology for soft pneumatic actuators using magnetorheological elastomers. In: 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), pp. 242–248. IEEE (2019)

    Google Scholar 

  49. Schmitz, A., Maggiali, M., Randazzo, M., Natale, L., Metta, G.: A prototype fingertip with high spatial resolution pressure sensing for the robot iCub. In: Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots, pp. 423–428 (2008). Capacitive

    Google Scholar 

  50. Maiolino, P., Maggiali, M., Cannata, G., Metta, G., Natale, L.: A flexible and robust large scale capacitive tactile system for robots. IEEE Sens. J. 13(10), pp. 3910–3917 (2013). Capacitive

    Google Scholar 

  51. Chossat, J.-B., Park, Y.-L., Wood, R.J., Duchaine, V.: A soft strain sensor based on ionic and metal liquids. IEEE Sens. J. 13(9), 3405–3414 (2013)

    Article  Google Scholar 

  52. Zhang, T., Jiang, L., Liu, H.: Design and functional evaluation of a dexterous myoelectric hand prosthesis with biomimetic tactile sensor. IEEE Trans. Neural Syst. Rehabil. Eng. 26(7), 1391–1399 (2018)

    Article  Google Scholar 

  53. Puangmali, P., Althoefer, K., Seneviratne, L.D.: Mathematical modeling of intensity-modulated bent-tip optical fiber displacement sensors. IEEE Trans. Instrum. Meas. 59(2), 283–291 (2009)

    Article  Google Scholar 

  54. Noh, Y., Bimbo, J., Sareh, S., Wurdemann, H., Fraś, J., Chathuranga, D., Liu, H., Housden, J., Althoefer, K., Rhode, K.: Multi-axis force/torque sensor based on simply-supported beam and optoelectronics. Sensors 16(11), 1936 (2016)

    Article  Google Scholar 

  55. Xie, H., Jiang, A., Wurdemann, H.A., Liu, H., Seneviratne, L.D., Althoefer, K.: Magnetic resonance-compatible tactile force sensor using fiber optics and vision sensor. IEEE Sens. J. 14(3), 829–838 (2013)

    Article  Google Scholar 

  56. Polygerinos, P., Seneviratne, L.D., Althoefer, K.: Modeling of light intensity-modulated fiber-optic displacement sensors. IEEE Trans. Instrum. Meas. 60(4), 1408–1415 (2010)

    Article  Google Scholar 

  57. Costanzo, M., De Maria, G., Natale, C., Pirozzi, S.: Design and calibration of a force/tactile sensor for dexterous manipulation. Sensors 19(4), 966 (2019)

    Article  Google Scholar 

  58. De Maria, G., Natale, C., Pirozzi, S.: Force/tactile sensor for robotic applications. Sens. Actuators A Phys. 175, 60–72 (2012). Optoelectric

    Google Scholar 

Download references

Acknowledgement

This project was partially supported by the POR FESR 2014-2020 National programme within BARTOLO project CUP B41C17000090007 and by the MIUR PON 20142020 National programme within PROSCAN project CUP E26C18000170005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanny Ficuciello .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ppt 563 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, H., Ferrentino, P., Pirozzi, S., Siciliano, B., Ficuciello, F. (2022). The PRISMA Hand II: A Sensorized Robust Hand for Adaptive Grasp and In-Hand Manipulation. In: Asfour, T., Yoshida, E., Park, J., Christensen, H., Khatib, O. (eds) Robotics Research. ISRR 2019. Springer Proceedings in Advanced Robotics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-95459-8_60

Download citation

Publish with us

Policies and ethics