Skip to main content

Active Rendezvous for Multi-robot Pose Graph Optimization Using Sensing over Wi-Fi

  • 1098 Accesses

Part of the Springer Proceedings in Advanced Robotics book series (SPAR,volume 20)

Abstract

We present a novel framework for collaboration amongst a team of robots performing Pose Graph Optimization (PGO) that addresses two important challenges for multi-robot SLAM: i) that of enabling information exchange “on-demand” via Active Rendezvous without using a map or the robot’s location, and ii) that of rejecting outlying measurements. Our key insight is to exploit relative position data present in the communication channel between robots to improve groundtruth accuracy of PGO. We develop an algorithmic and experimental framework for integrating Channel State Information (CSI) with multi-robot PGO; it is distributed, and applicable in low-lighting or featureless environments where traditional sensors often fail. We present extensive experimental results on actual robots and observe that using Active Rendezvous results in a 64% reduction in ground truth pose error and that using CSI observations to aid outlier rejection reduces ground truth pose error by 32%. These results show the potential of integrating communication as a novel sensor for SLAM.

Keywords

  • Rendezvous
  • Multi-robot SLAM
  • Sensing
  • Wi-Fi
  • Robotics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-95459-8_51
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-95459-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   379.99
Price excludes VAT (USA)
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

References

  1. Cadena, C., et al.: Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. Trans. Rob. 32(6), 1309–1332 (2016)

    Google Scholar 

  2. Carlone, L., Calafiore, G.C.: Convex relaxations for pose graph optimization with outliers. IEEE Robot. Autom. Lett. 3(2), 1160–1167 (2018)

    CrossRef  Google Scholar 

  3. Choudhary, S., Carlone, L., Nieto, C., Rogers, J., Christensen, H.I., Dellaert, F.: Distributed mapping with privacy and communication constraints: lightweight algorithms and object-based models. Int. J. Robot. Res. 36(12), 1286–1311 (2017)

    CrossRef  Google Scholar 

  4. Cunningham, A., Wurm, K.M., Burgard, W., Dellaert, F.: Fully distributed scalable smoothing and mapping with robust multi-robot data association. In: 2012 IEEE International Conference on Robotics and Automation. IEEE, pp. 1093–1100 (2012)

    Google Scholar 

  5. Fox, D., Ko, J., Konolige, K., Limketkai, B., Schulz, D., Stewart, B.: Distributed multirobot exploration and mapping. Proc. IEEE 94(7), 1325–1339 (2006)

    CrossRef  Google Scholar 

  6. Gil, S., Kumar, S., Katabi, D., Rus, D.: Adaptive communication in multi-robot systems using directionality of signal strength. Int. J. Robot. Res. 34(7), 946–968 (2015)

    CrossRef  Google Scholar 

  7. Gil, S., Kumar, S., Mazumder, M., Katabi, D., Rus, D.: Guaranteeing spoof-resilient multi-robot networks. Auton. Robot. 41(6), 1383–1400 (2017)

    CrossRef  Google Scholar 

  8. Grisetti, G., Kuemmerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based SLAM. IEEE Intell. Transp. Syst. Mag. 2(4), 31–43 (2010)

    CrossRef  Google Scholar 

  9. Halperin, D., Hu, W., Sheth, A., Wetherall, D.: Tool release: gathering 802.11n traces with channel state information. ACM SIGCOMM CCR 41(1), 53 (2011)

    Google Scholar 

  10. Howard, A.: Multi-robot simultaneous localization and mapping using particle filters. Int. J. Rob. Res. 25(12), 1243–1256 (2006)

    CrossRef  Google Scholar 

  11. Khan, U.A., Kar, S., Moura, J.M.: Linear theory for self-localization: convexity, barycentric coordinates, and cayley-menger determinants. IEEE Access 3, 1326–1339 (2015)

    CrossRef  Google Scholar 

  12. Kretzschmar, H., Stachniss, C.: Information-theoretic compression of pose graphs for laser-based slam. Int. J. Robot. Res. 31(11), 1219–1230 (2012)

    CrossRef  Google Scholar 

  13. Kumar, S., Gil, S., Katabi, D., Rus, D.: Accurate indoor localization with zero start-up cost. In: Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, ACM, New York, NY, USA, MobiCom 2014, pp. 483–494 (2014)

    Google Scholar 

  14. Kumar, S., Hamed, E., Katabi, D., Erran Li, L.: LTE radio analytics made easy and accessible. In: Proceedings of the 2014 ACM Conference on SIGCOMM, ACM, New York, NY, USA, SIGCOMM 2014, pp. 211–222 (2014)

    Google Scholar 

  15. Lazaro, M.T., Paz, L.M., Pinies, P., Castellanos, J.A., Grisetti, G.: Multi-robot slam using condensed measurements. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 1069–1076 (2013)

    Google Scholar 

  16. Lorincz, K., Welsh, M.: Motetrack: A robust, decentralized approach to RF-based location tracking. In: International Symposium on Location-and Context-Awareness. Springer, pp. 63–82 (2005)

    Google Scholar 

  17. Paull, L., Huang, G., Seto, M., Leonard, J.J.: Communication-constrained multi-AUV cooperative slam. In: 2015 IEEE international conference on robotics and automation (ICRA). IEEE, pp. 509–516 (2015)

    Google Scholar 

  18. Piovan, G., Shames, I., Fidan, B., Bullo, F., Anderson, B.D.: On frame and orientation localization for relative sensing networks. Automatica 49(1), 206–213 (2013)

    CrossRef  MathSciNet  Google Scholar 

  19. Roy, N., Dudek, G.: Collaborative robot exploration and rendezvous: algorithms, performance bounds and observations. Auton. Robot. 11(2), 117–136 (2001)

    CrossRef  Google Scholar 

  20. Saeedi, S., Trentini, M., Seto, M., Li, H.: Multiple-robot simultaneous localization and mapping: a review. J. Field Robot. 33(1), 3–46 (2016)

    CrossRef  Google Scholar 

  21. Simmons, R.G., Apfelbaum, D., Burgard, W., Fox, D., Moors, M., Thrun, S., Younes, H.L.S.: Coordination for multi-robot exploration and mapping. In: Proceedings of AAAI. AAAI Press, pp. 852–858 (2000)

    Google Scholar 

  22. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D slam systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 573–580 (2012)

    Google Scholar 

  23. Todescato, M., Carron, A., Carli, R., Schenato, L.: Distributed localization from relative noisy measurements: a robust gradient based approach. In: 2015 European Control Conference (ECC). IEEE, pp. 1914–1919 (2015)

    Google Scholar 

  24. Valencia, R., Miró, J.V., Dissanayake, G., Andrade-Cetto, J.: Active pose slam. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 1885–1891 (2012)

    Google Scholar 

  25. Vallvé, J., Andrade-Cetto, J.: Active pose slam with RRT. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 2167–2173 (2015)

    Google Scholar 

  26. Wang J, Katabi, D.: Dude, where’s my card? RFID positioning that works with multipath and non-line of sight. In: SIGCOMM 2013 (2013)

    Google Scholar 

  27. Wei, M., Aragues, R., Sagues, C., Calafiore, G.C.: Noisy range network localization based on distributed multidimensional scaling. IEEE Sens. J. 15(3), 1872–1883 (2014)

    Google Scholar 

  28. Zhang, Z., Scaramuzza, D.: A tutorial on quantitative trajectory evaluation for visual(-inertial) odometry. In: IEEE/RSJ International Conference Intelligent Robotics System (IROS) (2018)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support by the NSF CAREER award number 1845225, MIT Lincoln Labs Line Grant, and the Fulton Undergraduate Research Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiying Wang .

Editor information

Editors and Affiliations

Ethics declarations

Disclaimer

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This material is based upon work supported by the Under Secretary of Defense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Under Secretary of Defense for Research and Engineering.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ppt 816 KB)

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Wang, W., Jadhav, N., Vohs, P., Hughes, N., Mazumder, M., Gil, S. (2022). Active Rendezvous for Multi-robot Pose Graph Optimization Using Sensing over Wi-Fi. In: Asfour, T., Yoshida, E., Park, J., Christensen, H., Khatib, O. (eds) Robotics Research. ISRR 2019. Springer Proceedings in Advanced Robotics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-95459-8_51

Download citation