Skip to main content

Antifouling Strategies and Environmental Issues in Industrial Cooling Water Systems in Marine Environment

  • Chapter
  • First Online:
Legacy and Emerging Contaminants in Water and Wastewater

Abstract

The process of biofouling is ubiquitous to surfaces exposed in the marine environment. The problem is common to industries abstracting seawater for condenser cooling purpose like power plants, etc. Biofouling control and environment are two sides of a coin with respect to industrial cooling water system (CWS). Conventionally oxidizing biocides are the choice for biofouling control in CWS. Current regulatory norms for cooling water (CW) discharges in tropical marine environment stipulate a thermal threshold of ΔT of 7 °C from the ambient and a continuous biocidal discharge not exceeding 0.2 mg/L total residual oxidants (TRO) at the outfall. CWS, operating in tropical locations with high fouling pressure, have to tune their biocidal regimes to keep biofouling loads within threshold levels, such that it does not interfere with operations. Large CWS in tropical regions, with high fouling pressure, have to live with certain levels of biofouling, and the biocidal regime has to be tailor-made to treat a CWS depending on the level of cleanliness required, cost, type of organisms and seawater chemistry. Chlorine has been the cost-effective biocide of choice in most of the industrial CWS over the past few decades, due to its cost, availability, ease of handling and well-worked-out chemistry in seawater. However, their interactions with dissolved organics result in the formation of toxic halomethanes, which have been shown to persist and bioaccumulate in marine organisms. Biofouling is an interfacial or surface-associated phenomenon where treating the bulk cooling water with biocides results in requirement of huge biocide inventory and has effects on non-target organisms abstracted in CW. Surface protection in the form of AF coatings will greatly reduce the biocidal inventory and the environmental burden in the vicinity of industrial CW discharges. The two issues need to be handled in an integrated manner increasing industrial productivity as well as minimizing environmental damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Wahab A, Khodary A, Bensalah N (2010) Formation of trihalome thanes during seawater chlorination. J Env Protection 1:456–465

    Article  CAS  Google Scholar 

  • Adams JR, Price DG (1974) Thermal shock tolerance of larval Red Abalone (Haliotis rufescens) from Diablo Canyon, California. In: Adams JR, Hurley JF (eds) Environmental investigations at Diablo Canyon 1972–73. Pacific Gas and Electric, Department of Engineering Research, San Ramon, pp 155–175

    Google Scholar 

  • Allonier AS, Khalanski M, Camel V, Bermond A (1999) Characterization of chlorination by-products in cooling effluents of coastal nuclear power stations. Mar Pollut Bull 38(12):1232–1241

    Article  CAS  Google Scholar 

  • Ambrogi R (1997) Environmental impact of biocidal antifouling alternative treatments on seawater once-through cooling systems. In: Chlorine dioxide and disinfection. Proceedings of First European symposium on chlorine dioxide and disinfection” Rome, Italy, 7–8 Nov 1996, Collana Ambiente vol 17 pp119–132

    Google Scholar 

  • Anupkumar B, Rao TS, Venugopalan VP, Narasimhan SV (2014) Thermal mapping in the vicinity of an atomic power station. Indian Nuclear Society News 11(162):1–16

    Google Scholar 

  • Arrhenius A, Backhaus T, Hilvarsson A, Wendt I, Zgrundo A, Blanck H (2014) A novel bioassay for evaluating the efficacy of biocides to inhibit settling and early establishment of marine biofilms. Mar Pollut Bull 87:292–299

    Article  CAS  Google Scholar 

  • Bamber RN, Turnpenny AWH (2012) Entrainment of organisms through power station cooling water systems. In: Rajagopal S, Jenner HA, Venugopalan VP, Khalanski M (eds) Operational and environmental consequences of large industrial cooling water systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1698-2_10

    Chapter  Google Scholar 

  • Beauchamp RSA (1966) Low-level chlorination for the control of marine fouling C.E.G.B. Rep. No. Rd/L/M147

    Google Scholar 

  • Behnke S, Camper AK (2012) Chlorine dioxide disinfection of single and dual species biofilms, detached biofilm and planktonic cells. Biofouling 28(6):635–647

    Article  CAS  Google Scholar 

  • Bernarde A, Israel BM, Livier VP, Grandstorm ML (1965) Efficiency of chlorine dioxide as a bactericide. Appl Microbiol 13:776–780

    Article  Google Scholar 

  • Bidwell JR, Cherry DS, Farris JL, Petrille JC, Lyons LA (1999) Effects of intermittent halogenation on settlement, survival and growth of the zebra mussel, Dreissena polymorpha. Hydrobiologia 394:13–62

    Article  Google Scholar 

  • Bott TR (1990) Fouling Notebook. The Institute of Chemical Engineers, Rugby, England

    Google Scholar 

  • Bott TR, Tianqing L (2004) Ultrasound enhancement of biocide efficiency. Ultrason Sonochem 11:323–326

    Article  CAS  Google Scholar 

  • Bruijs CMM, Taylor CJL (2012) Fish impingement and prevention seen in the light of population dynamics. In: Rajagopal S, Jenner HA, Venugopalan VP, Khalanski M (eds) Operational and environmental consequences of large industrial cooling water systems. Springer, Boston. https://doi.org/10.1007/978-1-4614-1698-2_10

    Chapter  Google Scholar 

  • Burton DT, Margrey SL (1979) Control of fouling organisms in estuarine cooling water system by chlorine and bromine chloride. Environ Sci Technol 13(6):694–686

    Article  Google Scholar 

  • Busscher HJ, Bos R, van der Mei HC (1995) Initial microbial adhesion is a determinant for the strength of biofilm adhesion. FEMS Microbiol Lett 128:229–234

    Article  CAS  Google Scholar 

  • Carpenter EJ, Peck BB, Anderson SJ (1972) Cooling water chlorination and productivity of entrained phytoplankton. Mar Biol 16:37–40

    Article  CAS  Google Scholar 

  • Characklis WG (1990) Biofilm processes. In: Characklis WG, Marshall KC (eds) Biofilms. New York, John Wiley, pp 195–231

    Google Scholar 

  • Chase AL, Dijkstra AJ, Harris LG (2016) The influence of substrate material on ascidian larval settlement. Mar Pollut Bull 106:35–42

    Article  CAS  Google Scholar 

  • Chelossi E, Faimali M (2006) Comparative assessment of antimicrobial efficacy of new potential biocides for treatment of cooling and ballast waters. Sci Total Environ 356:1–10

    Article  CAS  Google Scholar 

  • Chow W, Maulbetswch JS, Muddalli YG (1984) Biofouling control through targeted chlorination. Power Engineering October 38–41

    Google Scholar 

  • Chua SL, Liu Y, Yam JKH, Chen Y, Vejborg RM, Tan BGC, Kjelleberg S, Tolker-Nielsen T, Givskov M, Yang L (2014) Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyle. Nat Commun 5:4462

    Article  CAS  Google Scholar 

  • Chuang YL, Yang HH, Lin HJ (2009) Effects of a thermal discharge from a nuclear power plant on phytoplankton and periphyton in subtropical coastal waters. J Sea Res 61:197–205

    Article  CAS  Google Scholar 

  • Cloete TE, Brozel VS, Holy A (1992) Practical aspects of biofouling control in industrial water systems. Int Biodeter Biodegr 29:299–341

    Article  CAS  Google Scholar 

  • Costerton JW, Geesey GG, Cheng KJ (1978) How bacteria stick. Sci Am 238:86–95. https://doi.org/10.1038/scientificamerican0178-86

    Article  CAS  Google Scholar 

  • Coughlan J, Whitehouse J (1977) Aspects of chlorine utilization in the United Kingdom. Chesapeake Sci 18(1):102–111

    Article  CAS  Google Scholar 

  • CPCB PCLS/02/2010: Temperature Limit for Discharge of Condenser Cooling Water from Thermal Power Plants (Source: Sixth Edition) pp 50

    Google Scholar 

  • Crisp DJ (1984) Overview of research on marine invertebrate larvae. 1940–1980. In: Costlow JD, Tipper RC (eds) Marine biodeterioration: an interdisciplinary study. Naval Institute Press, Annapolis, pp 103–126

    Chapter  Google Scholar 

  • Dang H, Lovell CR (2000) Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl Environ Microbiol:467–475

    Google Scholar 

  • de Carvalho CCR (2018) Microbial biofilms a successful strategy with economic implications. Front Mar Sci 5:126. https://doi.org/10.3389/fmars.2018.00126

    Article  Google Scholar 

  • Dobbs MG, Cherry DS, Scott JC, Petrille JC (1995) Environmental assessment of an alkyl dimethyl benzyl ammonium chloride based molluscicides using laboratory tests. In: Fifth international zebra mussel and aquatic nuisance organism’s conference. Toronto ON 21–24

    Google Scholar 

  • Dobretsov S, Rittschof D (2020) Love at first taste: induction of larval settlement by marine microbes. Int J Mol Sci 731. https://doi.org/10.3390/ijms21030731

  • Dobretsov S, Dahms HU, Qian PY (2006) Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling 22:43–54

    Article  CAS  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant micro-organisms. Clin Microbiol Rev 15:167–193

    Article  CAS  Google Scholar 

  • Duncan G, Waugh (1964) Observation on the effects of chlorine on the larvae of oysters Ostrea edulis (L) and barnacles Elminius modestus (Darwin). Ann Appl Rid 54:423–440

    Google Scholar 

  • Electric Power Research Institute (EPRI) and Department of Energy (DOE) (1997) Renewable energy technology characterizations. EPRI, Palo Alto

    Google Scholar 

  • Ells V, Filip N, Bishop CD, Demont ME, Smith-Palmer T, Wyeth RC (2016) A true test of colour effects on marine invertebrate larval settlement. J Exp Mar Biol Ecol 483:156–161

    Article  Google Scholar 

  • EPRI (Electric Power Research Institute (2015) Power plant cooling system overview. Guidance for Researchers and Technology Developers, Palo Alto, p 300200194

    Google Scholar 

  • Flemming HC (2016) EPS – then and now. Micro-organisms 4:41. https://doi.org/10.3390/microorganisms404004

    Article  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. https://doi.org/10.1038/nrmicro2415

    Article  CAS  Google Scholar 

  • Garaventa F, Corra C, Piazza V, Giacco E, Greco G, Pane L, Faimali M (2012) Settlement of the alien mollusc Brachidontes pharaonis in a Mediterranean industrial plant: bioassays for antifouling treatment optimization and management. Mar Environ Res 76:90–96

    Article  CAS  Google Scholar 

  • Gosselin LA, Qian PY (1997) Juvenile mortality in benthic marine invertebrates. Mar Ecol Prog Ser 146:265–282

    Article  Google Scholar 

  • Haag WR, Holgna J (1983) Ozonation of bromide-containing waters: kinetics of formation of hypobromous acid and bromate. Environ Sci Technol 17(5):281–287

    Article  Google Scholar 

  • Hadfield M, Paul V (2001) Natural chemical cues for settlement and metamorphosis of marine invertebrate larvae. In: McClintock J, Baker B (eds) Marine chemical ecology, vol 20015660. CRC Press, Boca Raton, pp 431–461. ISBN 978-0-8493-9064-7

    Chapter  Google Scholar 

  • Haque MN, Kwon S (2016a) Physiological effects of biocide on marine bivalve blue mussels in context prevent macrofouling. Journal of Ecology and Environment 40(16). https://doi.org/10.1186/s41610-016-0015-y

  • Haque NM, Kwon S (2016b) Effects of ultrasonication and its use with sodium hypochlorite as antifouling method against Mytilus edulis larvae and mussel. Environ Geochem Health. https://doi.org/10.1007/s10653-016-9894-1

  • Haque N, Cho D, Lee JM, Lee DS, Kwon S (2014) Proactive approach for biofouling control: consequences of chlorine on the veliger larvae of Mytilus edulis under laboratory conditions. Environ Eng Res 19(4):375–380

    Article  Google Scholar 

  • IAEA (1974) Thermal discharges at nuclear power stations: their management and environmental impacts. International Atomic Energy Agency, Vienna. Technical report series no.155

    Google Scholar 

  • Ibrahim SMA, Attia SI (2015) The influence of condenser cooling seawater fouling on the thermal performance of a nuclear power plant. Ann Nucl Energy 76:421–430

    Article  CAS  Google Scholar 

  • Israel S, Satheesh R, Venugopalan VP, Munuswamy N, Subramoniam T (2012) Impact of power plant discharge on intertidal fauna. In: Rajagopal S, Jenner HA, Venugopalan VP, Khalanski M (eds) Operational and environmental consequences of large industrial cooling water systems. Springer, Boston. https://doi.org/10.1007/978-1-4614-1698-2_10

    Chapter  Google Scholar 

  • James WG (1967) Mussel fouling and use of exomotive chlorination. Chem Ind:994–996

    Google Scholar 

  • Jang A, Scabo J, Hosni AA, Coughlin M, Bishop PL (2006) Measurement of chlorine dioxide penetration in dairy process pipe biofilms during disinfection. Appl Microbiol Biotechnol 72:368–376

    Article  CAS  Google Scholar 

  • Jenkins SR (2005) Larval habitat selection, not larval supply, determines settlement patterns and adult distribution in two chthamalid barnacles. J Anim Ecol 74:893–904

    Article  Google Scholar 

  • Jenner HA, Taylor CJL, van Donk M, Khalanski M (1997) Chlorination by-products in chlorinated cooling water of some European coastal power stations. Mar Environ Res 43(4):279–293

    Article  CAS  Google Scholar 

  • Jenner HA, Whitehouse JW, Taylor CJL, Khalanski M (1998) Cooling water management in European power stations: biology and control of fouling. Hydroecol Appl 10:1–225

    Article  Google Scholar 

  • Jiang Z, Zeng J, Chen Q, Huang Y, Liao Y, Xu X, Zheng P (2009) Potential impact of rising seawater temperature on copepods due to coastal power plants in subtropical areas. J Exp Mar Biol Ecol 368:196–201

    Article  Google Scholar 

  • Jolley RL, Condie LW, Johnson JD, Katz S, Minear RA, Mattice JS, Jacobs VA (1990) Water chlorination: chemistry environmental impact and health effects, vol 6. Lewis Publishers Inc., Michigan. 1023pp

    Google Scholar 

  • Kennedy VS, Roosenberg WH, Castanga M, Mihursky JA (1974) Mercenaria mercenaria (Mollusca: Bivalvia): temperature-time relationships for survival of embryos and larvae. US Fish Bull 72:1160–1166

    Google Scholar 

  • Keough MJ, Downes BJ (1982) Recruitment of marine invertebrates: the role of active larval choices and early mortality. Oecologia 54:348–352

    Article  Google Scholar 

  • Khalanski M, Bordet F (1980) Effects of chlorination on marine mussels. In: Jolly RL, Brungs WA, Cumming RB (eds) Water chlorination chemistry environmental impact and health effects, vol 3. Ann Arbor Science, Ann Arbor, pp 557–567

    Google Scholar 

  • Krammer JF (1997) Peracetic acid a new biocide for industrial water applications. MP August 42–50

    Google Scholar 

  • Krzeminski SF, Brackett CK, Fisher JD (1975) Fate of microbiocidal 3-isothiazolone compounds in the environment modes and rates of dissipation. J Agric Food Chem 23:1068–1075

    Article  CAS  Google Scholar 

  • Langford TEL (1990) Ecological effects of thermal discharges. Elsevier Applied Science, London pp 28–103

    Google Scholar 

  • Lappin-Scott HM, Costerton JM (1989) Bacterial biofilms and surface fouling. Biofouling 1:323–342

    Article  CAS  Google Scholar 

  • Lewis BG (1985) Mussel control and chlorination CERL Report NO TPRD/L/2810/R83

    Google Scholar 

  • Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007

    Article  CAS  Google Scholar 

  • Lewis RB, Seegert G (2000) Entrainment and impingement studies at two power plants on the Wabash River in Indiana. Environ Sci Policy 3:S303–S312

    Article  Google Scholar 

  • Little BJ, Wagner PA (1997) In: Nagabhushanam R, Thompson MF (eds) “Succession in microfouling” in fouling organisms in the Indian Ocean: biology and control technology. AA Balkema Publishers 548, Rotterdam

    Google Scholar 

  • Liu F, Change X, Yang F, Wang Y, Wang F, Dong W, Zhao C (2011) Effect of oxidizing and non-oxidizing biocides on biofilm at different substrate levels in the model recirculating cooling water system. World J Microbiol Biotechnol:2989–2997

    Google Scholar 

  • Lopez-Galindo C, Chacoff LV, Nebot E, Casanueva JF, Rubio D, Mancera JM, Sole M (2010) Sublethal responses of the common mussel (Mytilus galloprovincialis) exposed to sodium hypochlorite and Mexel® 432 used as antifoulants. Ecotoxicol Environ Saf 73:825–834

    Article  CAS  Google Scholar 

  • Ludensky M (2003) Control and monitoring of biofilms in industrial applications. Int Biodeter Biodegr 51:255–263

    Article  Google Scholar 

  • Marshall KC (1985) Mechanisms of bacterial adhesion at solid-water interfaces. In: Savage DC, Fletcher M (eds) Bacterial adhesion. Plenum Press, New York, pp 133–161

    Chapter  Google Scholar 

  • Marshall KC (1992) Biofilms: an overview of bacterial adhesion, activity, and control of surfaces. ASM News 58:202–207

    Google Scholar 

  • Martin ID, Mackie GL, Baker MA (1993) Control of the biofouling Mollusc, Dreissena polymorpha (Bivalvia: Dreissenidae), with sodium hypochlorite and with Polyquaternary ammonia and Benzothiazole compounds. Arch Environ Contam Toxicol 24:381–388

    Article  CAS  Google Scholar 

  • Masilamoni G, Jesudoss KS, Nandakumar K, Satpathy KK, Azariah J, Nair KVK (2002) Lethal and sub-lethal effects of chlorination on green mussel Perna viridis in the context of biofouling control in a power plant cooling water system. Mar Environ Res 53:65–76

    Article  CAS  Google Scholar 

  • Mazik K, Hitchman N, Quintino V, Taylor CJL, Butterfield J, Elliott M (2013) Sublethal effects of a chlorinated and heated effluent on the physiology of the mussel, Mytilus edulis L: a reduction in fitness for survival. Marine Pollution Bulletin, pp 123–131

    Google Scholar 

  • Morton LHG, Greenway DLA, Gaylarde CC Surman SB (1998) Consideration of some implications of the resistance of biofilms to biocides. Int Biodeter Biodegr 41:247–259

    Google Scholar 

  • Moshchenko AV, Zvyagintsev AY (2010) Macrofouling communities in the cooling system of the Vladivostok heat and power plant. Ocean Sci J 45(1):41–54

    Article  Google Scholar 

  • Murthy PS, Venkatesan R (2008) Industrial biofilms and their control. In: Flemming H-C, Murthy PS, Venkatesan R, Cooksey K (eds) Marine and industrial biofouling, Springer series on biofilms. Springer Verlag, Berlin, Heidelberg, pp 265–292. https://doi.org/10.1007/7142-2008-14

    Chapter  Google Scholar 

  • Murthy PS, Venkatesan R, Nair KVK, Inbakandan D, Syed Jahan S, Magesh Peter D, Ravindran M (2005) Evaluation of sodium hypochlorite for fouling control in plate heat exchangers for seawater application. Int Biodeter Biodegr 55:161–170

    Article  CAS  Google Scholar 

  • Murthy PS, Venugopalan VP, Nair KVK, Subramoniam T (2008) Larval settlement and surfaces: implications in development of antifouling strategies. In: Flemming H-C, Murthy PS, Venkatesan R, Cooksey K (eds) Marine and industrial biofouling, springer series on biofilms. Springer Verlag, Berlin, Heidelberg, pp 265–292. https://doi.org/10.1007/7142-2008-14

    Chapter  Google Scholar 

  • Murthy PS, Veeramani P, Mohamed Ershath MI, Venugopalan VP (2011) Biofouling evaluation in the seawater cooling circuit of an operating coastal power plant. Power Plant Chem 13(6):314–319. ISBN 978-1-926773-00-1; TRN:CA1500244102444

    CAS  Google Scholar 

  • Mussalli YG (1985) Condenser-targeted chlorination design. Final report United States

    Google Scholar 

  • Neitzel DA, Johnson KI, Page TL, Young JS, Daling PM (1984) Correlation of bivalve biological characteristics and service water system design. In: Bivalve fouling of nuclear power plant service water systems. US nuclear regulatory commission. Report No NUREG/CR-4070, Washington DC. 119 pg

    Google Scholar 

  • NRDC (2014) Power Plant Cooling and Associated Impacts: The need to modernize U.S. Power Plants and protect our Water Resources and Aquatic Ecosystems. IB: 14–04-C www.nrdc.org/policy

  • O’Hagan J, Birkinshaw K, Masri M, Therkelsen RL (2004) The formation and fate of trihalomethanes in power plant cooling water systems. Palo Alto: Electric Power Research Institute; Consultant report no 500-04-035

    Google Scholar 

  • Padhi RK, Subramanian S, Mohanty AK, Bramha SN, Prasad MVR, Satpathy KK (2012) Trihalomethanes in the cooling discharge of a power plant on chlorination of intake seawater environmental. Res Eng Des 17(S1):S57–S62. https://doi.org/10.4491/eer.2012.17.s1.s57. pISSN1226-1025 eISSN2005-968X

    Article  Google Scholar 

  • Patil JS, Jagadeesan V (2011) Effects of chlorination on the development of marine biofilms dominated by diatoms. Biofouling 27(3):241–254

    Article  CAS  Google Scholar 

  • Petrille JC, Werner MW (1993) A combined treatment approaches using a nonoxidizing molluscicide and heat to control zebra mussels. In: Third international zebra mussel conference. Toronto, ON 23–26

    Google Scholar 

  • Polman HJG, Jenner HA (2002) Pulse-chlorination, the best available technique in macrofouling mitigation using chlorine. Power Plant Chem 4:93–97

    CAS  Google Scholar 

  • Rajagopal S, Venugopalan VP, Nair KVK, Azariah J (1991) Biofouling problems and its control in a tropical coastal power station – a case study. Biofouling 3:325–338

    Article  CAS  Google Scholar 

  • Rajagopal S, Venugopalan VP, Nair KVK, Azariah J (1995) Response of green mussel Perna viridis (L) to chlorine in the context of power plant biofouling control. Mar Freshw Behav Physiol 25:261–274

    Article  Google Scholar 

  • Rajagopal S, Nair KVK, Van der Velde G, Jenner HA (1997) Seasonal settlement and succession of fouling communities in Kalpakkam east coast of India. Neth J Aquat Ecol 30:309–325

    Article  Google Scholar 

  • Rajagopal S, der Velde V, der Gaag V, Jenner HA (2002a) Sublethal responses of zebra mussel Dreissena polymorpha to low-level chlorination: an experimental study. Biofouling 19(2):95–104

    Article  CAS  Google Scholar 

  • Rajagopal S, der Gaag V, van der Velde G, Jenner HA (2002b) Control of brackish water fouling mussel, Mytilopsis leucophaeata (Conrad), with sodium hypochlorite. Arch Environ Contam Toxicol 43:296–300

    Article  CAS  Google Scholar 

  • Rajagopal S, Van der Velde G, Jenner HA (2002c) Does status of attachment influence survival time of zebra mussel Dreissena polymorpha exposed to chlorination. Environ Toxicol Chem 21(2):342–346

    Article  CAS  Google Scholar 

  • Rajagopal S, Van der Velde G, der Gaag V, Jenner HA (2002d) Laboratory evaluation of the toxicity of chlorine to the fouling hydroid Cordylophora caspia. Biofouling 18(1):57–64

    Article  CAS  Google Scholar 

  • Rajagopal S, Van der Velde G, Jenner HA (2002e) Effects of low-level chlorination on zebra mussel, Dreissena polymorpha. Water Res 36:3029–3034

    Article  CAS  Google Scholar 

  • Rajagopal S, Van der Welde G, Van der Garg M, Jenner HA (2003a) How effective is intermittent chlorination in control of adult mussel fouling in cooling water systems. Water Res 37:329–338

    Article  CAS  Google Scholar 

  • Rajagopal S, Venugopalan VP, Van der Velde G, Jenner HA (2003b) Tolerance of five species of tropical marine mussels to continuous chlorination. Mar Environ Res 55:277–291

    Article  CAS  Google Scholar 

  • Rajagopal S, Venugopalan VP, van der Velde JHA (2003c) Response of fouling brown mussel, Perna perna (L), to chlorine. Arch Environ Contam Toxicol 44:369–376

    Article  CAS  Google Scholar 

  • Rajagopal S, Venugopalan VP, van der Velde JHA (2006) Control of Modiolid mussels in cooling water systems by continuous chlorination. Arch Environ Contm Toxicol 51:215–222

    Article  CAS  Google Scholar 

  • Rajagopal S, Jenner HA, Venugopalan VP, Khalanski M (2012a) Biofouling control: alternatives to chlorine. In: Operational and environmental consequences of large industrial cooling water systems. Springer, pp 227–271. https://doi.org/10.1007/978-1-4614-1698-2_10

    Chapter  Google Scholar 

  • Rajagopal S, Jenner HA, Venugopalan VP, Khalanski M (2012b) Biofouling control: alternatives to chlorine. In: Rajagopal S, Jenner HA, Venugopalan VP, Khalanski M (eds) Operational and environmental consequences of large industrial cooling water systems. Springer, Boston. https://doi.org/10.1007/978-1-4614-1698-2_10

    Chapter  Google Scholar 

  • Rajamohan R, Vinnitha E, Venugopalan VP, Narasimhan SV (2007) Chlorination by-products in the cooling water system of a coastal electric plant. Curr Sci 93:1608–1612

    CAS  Google Scholar 

  • Rajamohan R, Venugopalan VP, Natesan U (2016) Chlorine dioxide as antifouling biocide results in reduced trihalomethanes in condenser effluents at a coastal power station. Indian J of Geo Marine Science 45(12):1638–1644

    Google Scholar 

  • Rajitha K, Nancharaiah YV, Venugopalan VP (2020) Insight into bacterial biofilm-barnacle larvae interactions for environmentally benign antifouling strategies. Int Biodeter Biodegr 149:104937

    Article  CAS  Google Scholar 

  • Roberts D, Rittschof D, Holm E, Schmidt AR (1991) Factors influencing initial larval settlement: temporal spatial and surface molecular components. J Exp Mar Biol Ecol 150:203–211

    Article  Google Scholar 

  • Rodriguez SR, Ojeda FP, Inestrosa NC (1993) Settlement of benthic marine invertebrates. Mar Ecol Prog Ser 97:193–207

    Article  Google Scholar 

  • Rollet C, Gal L, Guzzo J (2009) Biofilm-detached cells, a transition from a sessile to a planktonic phenotype: a comparative study of adhesion and physiological characteristics in Pseudomonas aeruginosa. FEMS Microbial Letters 290:135–142

    Article  CAS  Google Scholar 

  • Rubio D, Lopez-Galindo C, Casanueva JF, Nebot E (2014) Monitoring and assessment of an industrial antifouling treatment seasonal effects and influence of water velocity in open once-through seawater cooling system. Appl Therm Eng 67:378–387

    Article  Google Scholar 

  • Rubio D, Casanueva JF, Nebot E (2015) Assessment of the antifouling effect of five different treatment strategies on a seawater cooling system. Appl Therm Eng 85:124–134

    Article  Google Scholar 

  • Rumbaugh KP, Sauer K (2020) Biofilm dispersion. Nat Rev Microbiol. https://doi.org/10.1038/s41579-020-0385-0

  • Schneider R (1997) Generation of chlorine dioxide. In: Proceedings of “First European symposium on chlorine dioxide and disinfection” Rome, Italy 7–8 Nov 1996. Collana Ambiente 17:27–37

    Google Scholar 

  • Simon XE, Berdalet E, Gracia FEF, Llorens J (2014) Seawater disinfection by chlorine dioxide and sodium hypochlorite. A comparison of biofilm formation. Water Air Soil Pollut 225:1921

    Article  CAS  Google Scholar 

  • Somero GN (2010) The physiology of climate change: how potentials for acclimation and genetic adaptation will determine winners and losers. J Exp Biol 213:912–920

    Article  CAS  Google Scholar 

  • Song L, Wu J, Xi C (2012) Biofilms on environmental surfaces: evaluation of the disinfection efficacy of a novel steam vapour system. American J of Infection control:1–5

    Google Scholar 

  • Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199

    Article  CAS  Google Scholar 

  • Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    Article  CAS  Google Scholar 

  • Stoodley HL, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108. https://doi.org/10.1038/nrmicro821

    Article  CAS  Google Scholar 

  • Teixeira TP, Neves LM, Araiijo FG (2012) Thermal impact of a nuclear power plant in a coastal area in South-Eastern Brazil: effects of heating and physical structure on benthic cover and fish communities. Hydrobiologia 684:161–175

    Article  Google Scholar 

  • Thiyagarajan V, Nancharaiah YV, Venugopalan VP, Nair KVK, Subramoniam T (2000) Relative tolerance of cirripede larval stages to acute thermal shock: a laboratory study. J Thermal Biology 25:451–457

    Article  CAS  Google Scholar 

  • Thompson JS, Seed R, Richardson CA, Huf L, Walker G (1997) Effects of low level chlorination on the recruitment behaviour and shell growth of Mytilus edulis Linnaeus in power station cooling water. Sci Mar 61(2):77–85

    CAS  Google Scholar 

  • Thompson JS, Richardson CA, Seed R, Walker G (2000) Quantification of mussel (Mytilus edulis) growth from power station cooling waters in response to chlorination procedures. Biofouling 16(1):1–15

    Article  CAS  Google Scholar 

  • Turchi C, Wagner M, Kutscher C (2010) Water use in parabolic trough power plants: summary results from WorleyParsons’ analyses. National Renewable Energy Laboratory, Golden

    Book  Google Scholar 

  • Turnpenny AWH, Coughlan J, Ng B, Crews P, Bamber RN, Rowles P (2010) Cooling water options for the new generation of nuclear power stations in the UK SC070015/SR3 Environment Agency, Rio House, Waterside Drive Bristol BS324UD ISBN: 978-1-84911-192-8

    Google Scholar 

  • Turnpenny AWH, Bruijs CMM, Wolter C, Edwards N (2012) Regulatory aspects of choice and operation of large scale cooling systems in Europe. In: Rajagopal S, Jenner HA, Venugopalan VP, Khalanski M (eds) Operational and environmental consequences of large industrial cooling water systems. Springer, Boston. https://doi.org/10.1007/978-1-4614-1698-2_10

    Chapter  Google Scholar 

  • Van Benschoten JE, Jensen JN, Brady TJ, Lewis DP, Sferrazza J, Neuhauser EF (1993) Response of zebra mussel veligers to chemical oxidants. Water Res 27(4):575–582

    Article  Google Scholar 

  • Van Loosdrecht MCM, Picioreanu C, Heijnen JJ (1997) A more unifying hypothesis for the structure of microbial biofilms. FEMS Microb Ecol 24:181–183

    Article  Google Scholar 

  • Vannomi M, Creach V, Barry J, Sheahan (2018) Chlorine toxicity to Navicula pelliculosa and Achnanthes spp. in a flow-through system: the use of immobilised microalgae and variable chlorophyll fluorescence. Aquat Toxicol 202 pg 80–89

    Google Scholar 

  • Venkatesan R, Murthy PS (2008) Macrofouling control in power plants, In: Marine and Industrial Biofouling (eds) Flemming, H.C., Murthy P.S., Venkatesan, R., Cooksey K., Springer Series on Biofilms 4:265–291

    Google Scholar 

  • Venkatnarayanan S, Murthy PS, Kirubagaran R, Venugopalan VP (2016a) Effect of chlorination on barnacle larval stages: implications for biofouling control and environmental impact. Int Biodeter Biodegr 109:141–149

    Article  CAS  Google Scholar 

  • Venkatnarayanan S, Murthy PS, Nancharaiah YV, Kirubagaran R, Venugopalan VP (2016b) Chlorination induced damage and recovery in marine diatoms: assay by SYTOX(R) green staining. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2016.12.059

  • Venkatnarayanan S, Murthy PS, Kirubagaran R, Venugopalan VP (2017) Chlorine dioxide as an alternative antifouling biocide for cooling water systems: toxicity to larval barnacle Amphibalanus reticulatus (Utinomi). Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2017.01.023

  • Venugopalan VP (2018) Industrial seawater cooling systems under threat from the invasive green mussel Perna viridis. ASEAN J Sci & Technol Develop 35(1–2):65–69

    Article  Google Scholar 

  • Venugopalan VP, Narasimhan SV (2008) Operational and environmental issues in cooling water treatment: two sides of same coin? Water Digest 11:12–21

    Google Scholar 

  • Vinagrea C, Diasa M, Cerejaa R, Abreu-Afonsoa F, Floresc AAV, Mendoncaa V (2019) Upper thermal limits and warming safety margins of coastal marine species-indicator baseline for future reference. Ecol Indic 102:644–649

    Article  Google Scholar 

  • Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser 58:175–189. https://doi.org/10.3354/meps058175

    Article  Google Scholar 

  • Waller DL, Jeffrey J, Rach W, Cope G, Marking LL (1993) Toxicity of candidate molluscicides to zebra mussels (Dreissena polymorpha) and selected nontarget organisms. J Great Lakes Res 19(4):695–702

    Article  CAS  Google Scholar 

  • WHOI (1952) Marine fouling and its prevention. United states Naval Institute, Annapolis, p 388

    Google Scholar 

  • Wieczorek SK,Todd CD (1998) Inhibition and facilitation of settlement of epifaunal marine invertebrate larvae by microbial biofilm cues, Biofouling: The Journal of Bioadhesion and Biofilm Research, 12:1–3, 81–118. https://doi.org/10.1080/08927019809378348

  • Wither A, Bamber R, Colclough S, Dyer K, Elliott M, Holmes P, Jenner H, Taylor C, Turnplenny A (2012) Setting new thermal standards for transitional and coastal (TraC) waters. Mar Pollut Bull 64:1564–1579

    Article  CAS  Google Scholar 

  • Zobell CE (1943) The effect of solid surfaces upon bacterial activity. J Bacteriol 46:39–56

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sriyutha Murthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murthy, P.S. (2022). Antifouling Strategies and Environmental Issues in Industrial Cooling Water Systems in Marine Environment. In: Chakraborty, P., Snow, D. (eds) Legacy and Emerging Contaminants in Water and Wastewater. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-95443-7_5

Download citation

Publish with us

Policies and ethics