Skip to main content

Spatial Variability of Topographic Attributes and Channel Morphological Characteristics in the Ladakh Trans-Himalayas and Their Tectonic and Structural Controls

  • Chapter
  • First Online:
Himalayan Neotectonics and Channel Evolution

Part of the book series: Society of Earth Scientists Series ((SESS))

Abstract

The Trans-Himalayas in India comprise of the Ladakh, Karakoram and Zanskar (also spelled as Zaskar) ranges. These ranges are marked out by the presence of several active major thrust faults, which are epicenters of recurrent seismic activity. Their alignments control the main stream courses of the area, resulting in sharp bends, obtuse junctions, steep defiles and abrupt changes in channel morphology, wherever streams transition across different morpho-structural units. The present study focuses on the drainage composition and topographic characteristics of the Leh and Nubra valleys in the Ladakh region, along the courses of the Indus, Zanskar, Shyok and Nubra rivers. The morphometric attributes and spatial variation in terrain aspects of the basins developed within the aforementioned three ranges and draining into these four rivers are examined using the ALOS PALSAR Digital Elevation Model (DEM) to elicit watershed and channel parameters related to tectonics. Thrust faults digitized from the available geological maps of the region are compared with the principal streams extracted from the above DEM dataset through an overlay analysis to discern the influence exerted by the principal thrust faults and other structural lineaments on the drainage alignment. Segment-wise stream gradient indices reveal the abrupt changes in longitudinal profile and resultant changes in channel morphological characteristics as the rivers traverse these various structural and lithological entities. These attributes of the drainage character are compared with the various lithological and geomorphic entities of the area, to elicit the river character in each physiographic unit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allamano A, Claps P, Laio F (2009) Global warming increases flood risk in mountainous areas. Geophys Res Lett 36:L24404. https://doi.org/10.1029/2009GL041395

    Article  Google Scholar 

  • Ambili V, Narayana AC (2014) Tectonic effects on the longitudinal profiles of the Chaliyar River and its tributaries, southwest India. Geomorphology 217:37–47

    Article  Google Scholar 

  • Anand AK, Pradhan SP (2019) Assessment of active tectonics from geomorphic indices and morphometric parameters in part of the Ganga basin. J Mt Sci 16:1943–1961. https://doi.org/10.1007/s11629-018-5172-2

    Article  Google Scholar 

  • Ashrit R (2010) Investigating the Leh ‘Cloudburst’. National Centre for Medium Range Weather Forecasting, Ministry of Earth Sciences, Government of India. http://www.ncmrwf.gov.in/Cloudburst_Investigation_Report.pdf]. Accessed 26 April 2016

  • Banerji D, Patel PP (2019) Morphological aspects of the Bakreshwar River Corridor, West Bengal, India. In: Das B, Ghosh S, Islam A (eds) Advances in micro geomorphology of lower Ganga Basin—Part I: Fluvial geomorphology. Springer International Publishing, Cham, pp 155–189. https://doi.org/10.1007/978-3-319-90427-6_9

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309

    Article  Google Scholar 

  • Benn DI, Owen LA (1998) The role of Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation: review and speculative discussion. J Geol Soc London 155:353–363

    Article  Google Scholar 

  • Bhan SC, Devrani AK, Sinha V (2015) An analysis of monthly rainfall and the meteorological conditions associated with cloudburst over the dry region of Leh (Ladakh), India. Mausam 66:107–122

    Article  Google Scholar 

  • Bharadwaj H, Singh AP, Malhotra MS (1973) Body comparison of the high-altitude natives of Ladakh: a comparison with sea-level residents. Hum Biol 45:423–434

    Google Scholar 

  • Bhatt CM, Litoria PK, Sharma PK (2008) Geomorphic signatures of active tectonics in Bist Doab interfluvial tract of Punjab, NW India. J Indian Soc Remote Sens 36(4):361–373

    Article  Google Scholar 

  • Bhutiyani MK (2014) The Siachen Glacier: the second longest glacier outside the polar regions. In: Kale VS (ed) Landscapes and Landforms of India. Springer, Dordrecht, pp 105–113

    Chapter  Google Scholar 

  • Bhutiyani MK, Kale VS, Pawar NJ (2010) Climate change and the precipitation variations in the northwestern Himalaya: 1866 to 2006. Int J Climatol 30:535–548

    Article  Google Scholar 

  • Bookhagen B, Burbank DW (2006) Topography, relief and TRMM-derived rainfall variations along the Himalaya. Geophys Res Lett 33:L08405. https://doi.org/10.1029/2006GL026037

    Article  Google Scholar 

  • Brocklehurst SH (2010) Tectonics and geomorphology. Prog Phys Geogr 34:357–383. https://doi.org/10.1177/0309133309360632

    Article  Google Scholar 

  • Bull WB (2007) Tectonic geomorphology of mountains: a new approach to paleoseismology. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Bull WB, McFadden L (1977) Tectonic geomorphology north and south of the Garlock fault, California. In: Doehring DO (eds) Geomorphology in arid regions. Proceedings of the 8th Annual Geomorphology Symposium), State University of New York, Binghamton, pp 115–138

    Google Scholar 

  • Bull WB (1977) Tectonic geomorphology of the Mojave Desert. U.S. Geological Survey Contract Report 14-08-001-G-394. Office of Earthquakes, Volcanoes, and Engineering, Menlo Park, California

    Google Scholar 

  • Bull WB (1978) Geomorphic tectonic classes of the south front of the San Gabriel Mountain, California. U.S. Geological Survey Contract Report 14-08-001-G-394. Office of Earthquakes, Volcanoes, and Engineering, Menlo Park, California

    Google Scholar 

  • Burbank DW, Anderson RS (2011) Tectonic geomorphology. Wiley, New Jersey

    Book  Google Scholar 

  • Burbank DW, Leland J, Fielding E, Anderson RS, Brozovic N, Reid MR, Duncan C (1996) Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 379:505–510

    Article  Google Scholar 

  • Castillo M, Munoz-Salinas E, Ferrari L (2014) Response of a landscape to active tectonics using channel steepness indices (ksn) and OSL: a case study from the Jaliso block, western Mexico. Geomorphology 221:204–214. https://doi.org/10.1016/j.geomorph.2014.06.017

    Article  Google Scholar 

  • Church M, Ryder JM (1972) Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geol Soc Am Bull 83:3059–3072

    Article  Google Scholar 

  • Clift PD (2002) A brief history of the Indus River. In: Clift PD, Kroon D, Gaedicke C, Craig J (eds) The tectonic and climatic evolution of the Arabian Sea region, vol 195. Geological Society of London Special Publications. Geological Society of London, London, pp 237–258

    Google Scholar 

  • Cox RT (1994) Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: an example from the Mississippi Embayment. Geol Soc Am Bull 106(5):571–581. https://doi.org/10.1130/00167606(1994)1062.3.CO;2

    Article  Google Scholar 

  • Cunningham A (1854) Ladak, physical, historical and statistical. W.H. Allen & Company, London

    Google Scholar 

  • Dar RA, Chandra R, Romshoo SA (2013) Morphotectonic and lithostratigraphic analysis of intermontane Karewa basin of Kashmir Himalayas, India. J Mt Sci 10:1–15. https://doi.org/10.1007/s11629-013-2494-y

    Article  Google Scholar 

  • Das S, Patel PP, Sengupta S (2016) Evaluation of different digital elevation models for analyzing drainage morphometric parameters in a mountainous terrain: a case study of the Supin. Upper Tons Basin, Indian Himalayas. SpringerPlus, vol 5, p 1544. https://doi.org/10.1186/s40064-016-3207-0

  • Doornkamp JC (1986) Geomorphological approaches to the study of neotectonics. J Geol Soc 143:335–342. https://doi.org/10.1144/gsjgs.143.2.0335

    Article  Google Scholar 

  • Dortch JM, Owen LA, Caffee MW (2010) Quaternary glaciation in the Nubra and Shyok valley confluence, northernmost Ladakh, India. Quatern Res 74:132–144

    Article  Google Scholar 

  • Dortch JM, Owen LA, Caffee MW (2013) Timing and climatic drivers for glaciation across semi-arid western Himalaya-Tibetan orogen. Quatern Sci Rev 78:188–208

    Article  Google Scholar 

  • Drew F (1875) The Jummoo and Kashmir territories: a geographical account. Edward Stanford, London

    Google Scholar 

  • Duncan C, Masek J, Fielding E (2003) How steep are the Himalaya? Characteristics and implications of alongstrike topographic variations. Geology 31:75–78

    Article  Google Scholar 

  • England P, Molnar P (1990) Surface uplift, uplift of rocks, and exhumation of rocks. Geology 18:1173–1177

    Article  Google Scholar 

  • Evans IS, Hengl T, Gorsevski P (2009) Applications in geomorphology. In: Hengl T, Reuter HI (eds) Geomorphometry: concepts, software, applications. Developments in soil science, vol 33, pp 497–525. https://doi.org/10.1016/S0166-2481(08)00022-6

  • Fielding EJ (1996) Tibet uplift and erosion. Tectonophysics 260:55–84

    Article  Google Scholar 

  • Florinsky IV (2017) An illustrated introduction to general geomorphometry. Prog Phys Geogr 41:723–752

    Article  Google Scholar 

  • Ganjoo RK, Koul MN, Bahuguna IM, Ajai (2014) The complex phenomenon of glaciers of Nubra Valley, Karakorum (Ladakh), India. Nat Sci 6:733–740

    Google Scholar 

  • Gansser A (1964) Geology of the Himalaya. Wiley-Interscience, London

    Google Scholar 

  • Gruber S, Peckham S (2009) Land surface parameters and objects in hydrology. In: Hengl T, Reuter HI (eds) Geomorphometry: concepts, software, applications. Developments in soil science, vol 33, pp 171–194. https://doi.org/10.1016/S0166-2481(08)00007-X

  • Guha S, Patel PP (2017) Evidence of topographic disequilibrium in the Subarnarekha River Basin, India: a digital elevation model based analysis. J Earth Syst Sci 126:106. https://doi.org/10.1007/s12040-017-0884-1

    Article  Google Scholar 

  • Hack JT (1973) Stream profile analysis and stream-gradient index. J Res US Geol Surv 1:421–429

    Google Scholar 

  • Hare PW, Gardner TW (1985) Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. In: Morisawa M, Hack JT (eds) Tectonic geomorphology. Proceedings of the 15th Annual Binghamton Geomorphology Symposium. Allen and Unwin, Boston, MA, pp 123–134

    Google Scholar 

  • Harlin JM (1978) Statistical moments of the hypsometric curve and its density function. Int J Assoc Math Geol 10:59–72

    Article  Google Scholar 

  • Hedrick KA, Seong YB, Owen LA, Caffee MW, Dietsch C (2011) Towards defining the transition in style and timing of Quaternary glaciation between the monsoon-influenced Greater Himalaya and the semi-arid Transhimalaya of northern India. Quatern Int 236:21–33

    Article  Google Scholar 

  • Hobley DEJ, Sinclair HD, Mudd SM (2012) Reconstruction of a major storm event from its geomorphic signature: the Ladakh floods, 6 August 2010. Geology 40:483–486

    Article  Google Scholar 

  • Imsong W, Bhattacharya F, Mishra RL, Phukan S (2017) Geomorphic evidence of late Quaternary displacement of the Karakoram Fault in Nubra and Shyok valleys, Ladakh Himalaya.Curr Sci 2295–2305

    Google Scholar 

  • Jacobson A (2000) Solar energy measurements for Ladakh, India. In: Banerjee R, Nayak JK, Fernandes BG (eds) Renewable energy technology for the new millennium, Proceedings of the 24th national renewable energy convention. Allied Publishers Limited, New Delhi

    Google Scholar 

  • Jamieson SSR, Sinclair HD, Kirstein LA, Purves RS (2004) Tectonic forcing of longitudinal valleys in the Himalaya: morphological analysis of the Ladakh batholith, north India. Geomorphology 58:49–65

    Article  Google Scholar 

  • Juyal N (2010) Cloud burst-trigged debris flow around Leh. Curr Sci 99:1166–1167

    Google Scholar 

  • Juyal N (2014) Ladakh: the high-altitude Indian cold desert. In: Kale VS (ed) Landscapes and Landforms of India. Springer, Dordrecht, pp 115–124

    Chapter  Google Scholar 

  • Kale VS, Achyuthan H, Sengupta S (2010) Reconstruction of late quaternary fluvio-sedimentary response of Kaveri and Palar Rivers: based on Chronostratigraphy, Digital geomorphometry and remote sensing analysis. University of Pune, Pune

    Google Scholar 

  • Keller EA, Pinter N (2002) Active tectonics: earthquakes, uplift and landscape, 2nd edn. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  • Knighton D (1998) Fluvial forms and processes: a new perspective. Routledge

    Google Scholar 

  • Kotlia BS, Shukla UK, Bhalla MS, Mathur PD, Pant CC (1997) Quaternary fluvio-lacustrine deposits of the Lamayuru Basin, Ladakh Himalaya: preliminary multidisciplinary investigations. Geol Mag 134(6):807–812

    Article  Google Scholar 

  • Kumar A, Srivastava P (2018) Landscape of the Indus River. In: Singh D (ed) The Indian Rivers. Springer, pp 47–59

    Chapter  Google Scholar 

  • Kumar MS, Shekhar MS, Rama Krishna SSVS, Bhutiyani MR, Ganju A (2012) Numerical simulation of cloud burst event on August 05, 2010, over Leh using WRF mesoscale model. Nat Hazards 62:1261–1271

    Article  Google Scholar 

  • Langbein WB (1964) Profiles of rivers of uniform discharge. US Geol Surv Prof Pap 501B:119–122

    Google Scholar 

  • Lee CS, Tsai LL (2010) A quantitative analysis for geomorphic indices of longitudinal river profile: a case study of the Choushui River, Central Taiwan. Environ Earth Sci 59:1549–1558

    Article  Google Scholar 

  • Lin Z, Oguchi T (2004) Drainage density, slope angle, and relative basin position in Japanese bare lands from high-resolution DEMs. Geomorphology 63(3–4):159–173

    Article  Google Scholar 

  • Lin Z, Oguchi T (2006) DEM analysis on longitudinal and transverse profiles of steep mountainous watersheds. Geomorphology 78:77–89

    Article  Google Scholar 

  • Lohan SK, Sharma S (2012) Present status of renewable energy resources in Jammu & Kashmir state of India. Renew Sustain Energy Rev 16:3251–3258

    Article  Google Scholar 

  • Mahmood SA, Gloaguen R (2012) Appraisal of active tectonics in Hindu Kush: insights from DEM derived geomorphic indices and drainage analysis. Geosci Front 3:407–428. https://doi.org/10.1016/j.gsf.2011.12.002

    Article  Google Scholar 

  • Munack H, Korup O, Resentini A, Limonta A, Garsanti E, Blothe JH, Scherler D, Wittman H, Kubik PW (2014) Postglacial denudation of western Tibetan plateau margin outspaced by long-term exhumation. Bull Geol Soc America 126:1580–1594. https://doi.org/10.1130/B30979.1

    Article  Google Scholar 

  • Nag SK, Chakraborty S (2003) Influence of rock types and structures in the development of drainage network in hard rock area. J Indian Soc Remote Sens 31:25–35

    Article  Google Scholar 

  • Nag D, Phartiyal B, Joshi M (2021) Late Quaternary tectono-geomorphic forcing vis-a-vis topographic evolution of Indus catchment, Ladakh. India. Catena 199:105103. https://doi.org/10.1016/j.catena.2020.105103

    Article  Google Scholar 

  • Nagar DP, Ahmed Z (2007) Biological spectrum of Nubra Valley (Ladakh). Indian J Forest 30:479–481

    Article  Google Scholar 

  • O’Brien GR, Wheaton JM, Fryirs K, Macfarlane WW, Brierley G, Whitehead K, Gilbert J, Volk C (2019) Mapping valley bottom confinement at the network scale. Earth Surf Proc Land 44(9):1828–1845

    Google Scholar 

  • Oguchi T (1997) Drainage density and relative relief in humid steep mountains with frequent slope failure. Earth Surf Proc Land 22:107–120. https://doi.org/10.1002/(SICI)1096-9837(199702)22:2%3c107::AID-ESP680%3e3.0.CO;2-U

    Article  Google Scholar 

  • Olaya V (2009) Basic land-surface parameters. In: Hengl T, Reuter HI (eds) Geomorphometry: concepts, software, applications. Developments in soil science, vol 33, pp 141–69. https://doi.org/10.1016/S0166-2481(08)00006-8

  • Osmaston H (1994) The geology, geomorphology and Quaternary history of Zangskar. In: Crook J, Osmaston H (eds) Himalayan Buddhist villages: environment, resources, society and religious life in Zangskar, Ladakh. University of Bristol Press, Bristol, pp 1–36

    Google Scholar 

  • Owen LA (2014) Himalayan landscapes of India. In: Kale VS (ed) Landscapes and landforms of India. Springer, Dordrecht, pp 41–52

    Chapter  Google Scholar 

  • Owen LA, Dortch JM (2014) Nature and timing of Quaternary glaciation in the Himalayan-Tibetan orogen. Quatern Sci Rev 88:14–54

    Article  Google Scholar 

  • Owen LA (2011) Quaternary glaciation of northern India. In: Elhers J, Gibbard P, Hughes PD (eds) Quaternary glaciations: extent and chronology: a closer look. Developments in quaternary science, vol 15. Elsevier, Amsterdam, pp 929–942

    Google Scholar 

  • Palmer TN, Rälsänen J (2002) Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature 415:512–514

    Article  Google Scholar 

  • Patel PP (2012) An exploratory geomorphological analysis using modern techniques for sustainable development of the Dulung river basin. Unpublished Ph.D. thesis, University of Calcutta, Kolkata. https://sg.inflibnet.ac.in/handle/10603/156681

  • Patel PP (2013) GIS techniques for landscape analysis—case study of the Chel River Basin, West Bengal. In:Proceedings of state level seminar on geographical methods in the appraisal of landscape, held at Department of Geography, Dum Dum Motijheel Mahavidyalaya, Kolkata, 20 March 2012, pp 1–14

    Google Scholar 

  • Patel PP, Sarkar A (2007) Hypsometric analysis of the Dulung N. Basin and its sub-basins. Geograph Rev India 69(4):409–422

    Google Scholar 

  • Patel PP, Sarkar A (2009) Application of SRTM data in evaluating the morphometric attributes: a case study of the Dulung River Basin. Pract Geographer 13(2):249–265

    Google Scholar 

  • Patel PP, Sarkar A (2010) Terrain characterization using SRTM data. J Indian Soc Remote Sens 38(1):11–24. https://doi.org/10.1007/s12524-010-0008-8

    Article  Google Scholar 

  • Patel PP, Dasgupta R, Chanda S, Mondal S (2021) An investigation into longitudinal forms of gullies within the “Grand Canyon” of Bengal, Eastern India. Trans GIS 25(5):2501–2528. https://doi.org/10.1111/tgis.12828

  • Perez-Pena JV, Azanon JM, Azor A (2008) CalHypso: an ArcGIS extension to calculate hypsometric curves and their statistical moments. Comput Geosci 35:1214–1223

    Article  Google Scholar 

  • Phartiyal B, Kothyari GC (2012) Impact of neotectonicson drainage network evolution reconstructed from morphometric indices: case study from NW Indian Himalaya. Zeitschrift Fur Geomorphologie 56:121–140. https://doi.org/10.1127/0372-8854/2011/0059

    Article  Google Scholar 

  • Phartiyal B, Sharma A, Upadhyay R, Sinha AK (2005) Quaternary geology, tectonics and distribution of palaeo-and present fluvio/glacio lacustrine deposits in Ladakh, NW Indian Himalaya—a study based on field observations. Geomorphology 65(3–4):241–256

    Article  Google Scholar 

  • Pike RJ (2000) Geomorphometry: diversity in quantitative surface analysis. Prog Phys Geogr 24:1–20

    Google Scholar 

  • Pike RJ, Evans IS, Hengl T (2009) Geomorphometry: a brief guide. In: Hengl T, Reuter HI (eds) Geomorphometry: concepts, software, applications. Developments in soil science, vol 33, pp 3–30. https://doi.org/10.1016/S0166-2481(08)00001-9

  • Prerna R, Pandey DK, Mahender K (2018) Longitudinal profiling and elevation-relief analysis of the Indus. Arab J Geosci 11:343. https://doi.org/10.1007/s12517-018-3657-5

    Article  Google Scholar 

  • Radaideh OMA, Mosar J (2019) Tectonic controls on fluvial landscapes and drainage development in the westernmost part of Switzerland: insights from DEM-derived geomorphic indices. Tectonophysics 768:228179

    Google Scholar 

  • Rajbanshi J, Das S, Patel PP (2022) Planform changes and alterations of longitudinal connectivity caused by the 2019 flood event on the braided Brahmaputra River in Assam, India. Geomorphol 403:108174. https://doi.org/10.1016/j.geomorph.2022.108174

  • Ramachandra TV, Jain R, Krishnadas G (2011) Hotspots of solar potential in India. Renew Sustain Energy Rev 15:3178–3186

    Article  Google Scholar 

  • Ramirez-Herrera MT (1998) Geomorphic assessment of active tectonics in the Acambay graben, Mexican volcanic belt. Earth Surf Proc Land 23:317–332

    Article  Google Scholar 

  • Rasmussen KL, House RA Jr (2012) A flash-flooding storm at the steep edge of high terrain. Bull Am Meteor Soc 93:1713–1724

    Article  Google Scholar 

  • Remondo J, Oguchi T (2009) Editorial- GIS and SDA applications in geomorphology. Geomorphology 111:1–3. https://doi.org/10.1016/j.geomorph.2009.04.015

    Article  Google Scholar 

  • Robl J, Stuwe K, Hergarten S (2008) Channel profiles around Himalayan river anticlines: constraints on their formation from digital elevation model analysis. Tectonics 27:TC3010. https://doi.org/10.1029/2007TC002215

  • Sarkar A, Patel PP (2011) Topographic analysis of the Dulung R Basin. Indian J Spat Sci II(1):2

    Google Scholar 

  • Sarkar A, Patel PP (2012) Terrain classification of the Dulung Drainage Basin. Indian J Spat Sci III 1:6

    Google Scholar 

  • Sarkar A, Roy L, Das S, Sengupta S (2021) Fluvial response to active tectonics: analysis of DEM-derived longitudinal profiles in the Rangit River Basin, Eastern Himalayas India. Environ Earth Sci 80:258. https://doi.org/10.1007/s12665-021-09561-2

    Article  Google Scholar 

  • Sarkar A, Patel PP (2009) Drainage analysis of the dulung basin. In: Sharma HS, Kale VS (ed) Geomorphology in India. Prayag Pustak Bhavan, Allahabad, pp 133–154

    Google Scholar 

  • Schumm SA (1956) Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol Soc Am Bull 67:597–646

    Article  Google Scholar 

  • Searle MP, Owen LA (1999) The evolution of the Indus River in relation to topographic uplift, climate and geology of western Tibet, the Trans-Himalayan and High-Himalayan Range. In: Meadows A, Meadows PS (eds) The Indus River: biodiversity, resources and humankind. Oxford University Press, Oxford, pp 210–230

    Google Scholar 

  • Seeber L, Gornitz V (1983) River profiles along the Himalayan arc as indicators of active tectonics. Tectonophysics 92:335–367. https://doi.org/10.1016/0040-1951(83)90201-9

    Article  Google Scholar 

  • Sharma J (2003) Architectural heritage: Ladakh. Haranand Publications, New Delhi

    Google Scholar 

  • Singh V, Tandon SK (2008) The Pinjaur dun (intermontane longitudinal valley) and associated active mountain fronts, NW Himalaya. Tectonic geomorphology and morphotectonic evolution. Geomorphology 102:376–394. https://doi.org/10.1016/j.geomorph.2008.04.008

  • Sklar L, Dietrich W (1998) River longitudinal profiles and bedrock incision models: stream power and the influence of sediment supply. In: Tinkler KJ, Wohl EE (eds) Rivers over rocks: fluvial processes in bedrock channels. American Geophysical Union Geophysical Monograph Series, vol 107, pp 207–230

    Google Scholar 

  • Sofia G (2020) Combining geomorphometry, feature extraction techniques and earth-surface processes research: the way forward. Geomorphology 355:107055. https://doi.org/10.1016/j.geomorph.2020.107055

    Article  Google Scholar 

  • Strahler AN (1952) Hypsometric (area-altitude) analysis of erosional topography. GSA Bull 63(11):1117–1142

    Article  Google Scholar 

  • Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 38(6):913–920. https://doi.org/10.1029/TR038i006p00913

    Article  Google Scholar 

  • Strecker MR, Hilley GE, Arrowsmith JR, Coutand I (2003) Differential structural and geomorphic mountainfront evolution in an active continental collision zone: the northwest Pamir, southern Kyrgyzstan. Geol Soc Am Bull 115:166–181

    Article  Google Scholar 

  • Thakur VC (1981) Regional framework and geodynamic evolution of the Indus-Tsangpo suture zone in the Ladakh Himalayas. Trans Royal Soc Edinburgh: Earth Sci 72:87–97

    Article  Google Scholar 

  • Thayyen RJ, Dimri AP, Kumar P, Agnihotri G (2013) Study of cloudburst and flash floods around Leh, India, during August 4–6, 2010. Nat Hazards 65:2175–2204

    Article  Google Scholar 

  • Troiani F, Della Seta M (2008) The use of the stream length–gradient index in morphotectonic analysis of small catchments: a case study from Central Italy. Geomorphol 102(1):159–168. https://doi.org/10.1016/j.geomorph.2007.06.020

  • Wadia, DN (1919) Geology of India. Macmillan Publishers.

    Google Scholar 

  • Whipple KX (2004) Bedrock rivers and the geomorphology of active orogens. Annu Rev Earth Planet Sci 32:151–185. https://doi.org/10.1146/annurev.32.101802.1203556

    Article  Google Scholar 

  • Whipple KX, Tucker GE (2002) Implications of sediment flux dependent river incision models for landscape evolution. J Geophys Res-Solid Earth 107:2039. https://doi.org/10.1029/2001JB000162

    Article  Google Scholar 

  • Wobus CW, Whipple KX, Kirby E, Snyder NP, Johnson J, Spyropolu K, Crosby BT, Sheehan D (2006) Tectonics from topography: procedure, promise and pitfalls. In: Willet SD, Hovius N, Brandon MT, Fisher DM (eds) Tectonics, climate and landscape evolution. Geological Society of America Bulletin Special Paper, vol 398, pp 55–74

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Rajarshi Dasgupta of the Department of Geography, East Calcutta Girls’ College, Kolkata and Dr. Somasis Sengupta of the Department of Geography, The University of Burdwan, Barddhaman, for their inputs regarding the paper.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, P.P., Guha, S., Das, D., Bose, M. (2022). Spatial Variability of Topographic Attributes and Channel Morphological Characteristics in the Ladakh Trans-Himalayas and Their Tectonic and Structural Controls. In: Bhattacharya, H.N., Bhattacharya, S., Das, B.C., Islam, A. (eds) Himalayan Neotectonics and Channel Evolution. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-030-95435-2_3

Download citation

Publish with us

Policies and ethics