Skip to main content

A Deep Analysis on the Role of Deep Learning Models Using Generative Adversarial Networks

  • Chapter
  • First Online:
Blockchain and Deep Learning

Abstract

A comparatively novel advance field of deep learning is the Generative Adversarial Network called GAN. These different types of networks if they start working in line with each other and work not to get the better of each other but start working keeping arm to arm connected to each other's world will be different. GAN is a category of machine learning frameworks intended for generation of images in which neural networks challenge each other in format of playing game. One network generates metaphors also called the generator and an additional network attempt to differentiate between the fake and real from the data set called as the discriminator. If suppose a training set is presented this procedure guides to manufacture a innovative information comparable to training set. Pictures created from GAN are same metaphors giving the notion of genuine to any observer having real features. GAN networks work on supervised, unsupervised and for reinforcement learning but earlier it applies or used only unsupervised learning only. This generative network produces candidate and on the other hand, the discriminative network evaluate them. Here producer is a complex neural network and differentiator is a convolution neural network. The GAN network divided into three categories to produce generative model learns and generation of data by probabilistic ideas. Next training of model can be completed in contradictory state. Lastly for training using neural networks, deep learning, and artificial intelligence methods. If generative networks used deep leaning methods then deep learning models can employ a very large amount of dataset, heavily dependent on high-end Machines, tries to solves problem from end to end machines, takes longer time to train means the results are better after getting trained on the other hand takes lesser time to test the data. Applications of GAN networks are increasing day by day as it is touching every sphere of our day today life. Some of the benefits of the deep learning are to creating artificial Intelligence function which mimics the mechanism of human brain in handing out data for decision making. Deep learning if combined with artificial intelligence can be capable of learning data which is considered unlabeled and unstructured. The chapter will relate different models of deep learning and their efficiency can be measured by studying different methods, models and simulation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://en.wikipedia.org/wiki/Generative_adversarial_network

  2. Aggarwal, A., Mittal, M., Battineni, G. Generative adversarial network: An overview of theory and applications. Int. J. Inf. Manage. Data Insights 100004 (2021)

    Google Scholar 

  3. Yu, Y., Huang, Z., Li, F., Zhang, H., Le, X. Point Encoder GAN: a deep learning model for 3D point cloud inpainting. Neurocomputing 384,192–199 (2020)

    Google Scholar 

  4. Go, T., Lee, S., You, D., Lee, S.J. Deep learning-based hologram generation using a white light source. Sci. Rep. 10(1), 1–12 (2020)

    Google Scholar 

  5. Chen, Y., Christodoulou, A.G., Zhou, Z., Shi, F., Xie, Y., Li, D. MRI super-resolution with GAN and 3D multi-level DenseNet: smaller, faster, and better. arXiv preprint arXiv:2003.01217 (2020)

  6. Baek, S., Kim, K.I., Kim, T.K. Weakly-supervised domain adaptation via GAN and mesh model for estimating 3D hand poses interacting objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6121–6131 (2020)

    Google Scholar 

  7. Jain, D.K., Zareapoor, M., Jain, R., Kathuria, A., Bachhety, S. GAN-Poser: an improvised bidirectional GAN model for human motion prediction. Neural Comput. Appli. 1–13 (2020)

    Google Scholar 

  8. Cirillo, M. D., Abramian, D., Eklund, A. Vox2Vox: 3D-GAN for brain tumour segmentation. arXiv preprint arXiv:2003.13653 (2020)

  9. Singh, N.K., Raza, K. Medical image generation using generative adversarial networks. arXiv preprint arXiv:2005.10687 (2020).

  10. Islam, J., Zhang, Y.: GAN-based synthetic brain PET image generation. Brain Inf. 7, 1–12 (2020)

    Article  Google Scholar 

  11. Zhang, X., Jian, W., Chen, Y., Yang, S. Deform-GAN: an unsupervised learning model for deformable registration. arXiv preprint arXiv:2002.11430 (2020)

  12. He, X., Lei, Y., Liu, Y., Tian, Z., Wang, T., Curran, W.J., Yang, X. Deep attentional GAN-based high-resolution ultrasound imaging. In: Medical Imaging 2020: Ultrasonic Imaging and Tomography (Vol. 11319, p. 113190B). International Society for Optics and Photonics (2020)

    Google Scholar 

  13. Amyar, A. et al. RADIOGAN: deep convolutional conditional generative adversarial network to generate PET images. arXiv preprint arXiv:2003.08663 (2020)

  14. Zhou, H., Cai, R., Quan, T., Liu, S., Li, S., Huang, Q., Zeng, S.: 3D high resolution generative deep-learning network for fluorescence microscopy imaging. Opt. Lett. 45(7), 1695–1698 (2020)

    Article  Google Scholar 

  15. Lan, H., Toga, A.W., Sepehrband, F., Alzheimer Disease Neuroimaging Initiative. SC-GAN: 3D self-attention conditional GAN with spectral normalization for multi- modal neuroimaging synthesis. bioRxiv (2020)

    Google Scholar 

  16. Mokhayeri, F., Kamali, K., Granger, E. (2020). Cross-domain face synthesis using a controllable GAN. In: The IEEE Winter Conference on Applications of Computer Vision (pp. 252–260)

    Google Scholar 

  17. Deep learning-based hologram generation using a white light source. Sci. Rep. (Nature Publisher Group) 10(1) (2020)

    Google Scholar 

  18. Ye, G., Zhang, Z., Ding, L., Li, Y., Zhu, Y. GAN-based focusing-enhancement method for monochromatic synthetic aperture imaging. IEEE Sensors J. (2020)

    Google Scholar 

  19. Jyoti, I., Zhang, Y. GAN-based synthetic brain PET image generation. Brain Inf. 7(1) (2020)

    Google Scholar 

  20. Wang, Y.D., Armstrong, R.T., Mostaghimi, P. Boosting resolution and recovering texture of 2D and 3D micro‐CT images with deep learning. Water Resour. Res. 56(1), e2019WR026052 (2020)

    Google Scholar 

  21. Lee, K.S., Town, C. Mimicry: towards the reproducibility of GAN research. arXiv preprint arXiv:2005.02494 (2020)

  22. Jung, J. RenderGAN: GAN based texture rendering

    Google Scholar 

  23. Oulbacha, R., Kadoury, S. MRI to CT synthesis of the lumbar spine from a Pseudo-3D cycle GAN. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1784–1787. IEEE (2020)

    Google Scholar 

  24. Zhang, S., Wang, L., Chang, C., Liu, C., Zhang, L., Cui, H. An image denoising method based on BM4D and GAN in 3D shearlet domain. Math. Probl. Eng. (2020)

    Google Scholar 

  25. Liu, X., Qiao, Y., Xiong, Y., Cai, Z., Liu, P.: Cascade conditional generative adversarial nets for spatial-spectral hyperspectral sample generation. Inf. Sci. 63(140306), 1–140306 (2020)

    Google Scholar 

  26. Zhaoa, G., Meyerand, M.E., Birn, R.M. Bayesian conditional GAN for MRI brain image synthesis. arXiv preprint arXiv:2005.11875 (2020)

  27. Yin, Y., Jiang, S., Robinson, J.P., Fu, Y. Dual-attention GAN for large-pose face frontalization. arXiv preprint arXiv:2002.07227 (2020)

  28. Yang, D., Xiong, T., Xu, D., Zhou, S.K. Segmentation using adversarial image- to-image networks. In: Handbook of Medical Image Computing and Computer Assisted Intervention, pp. 165–182. Academic Press (2020)

    Google Scholar 

  29. Ma, Q., Yang, J., Ranjan, A., Pujades, S., Pons-Moll, G., Tang, S., Black, M.J. Learning to dress 3d people in generative clothing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6469–6478 (2020)

    Google Scholar 

  30. Shi, L., Onofrey, J.A., Liu, H., Liu, Y.H., Liu, C. Deep learning-based attenuation map generation for myocardial perfusion SPECT. Eur. J. Nuclear Med. Mol. Imaging 1–13 (2020)

    Google Scholar 

  31. Kowalski, M., Garbin, S.J., Estellers, V., Baltrušaitis, T., Johnson, M., Shotton, J. CONFIG: controllable neural face image generation. arXiv preprint arXiv:2005.02671 (2020)

  32. Spick, R., Demediuk, S., Alfred Walker, J. Naive Mesh-to-Mesh Coloured Model Generation using 3D GANs. In: Proceedings of the Australasian Computer Science Week Multiconference, pp. 1–6 (2020)

    Google Scholar 

  33. Wang, Z., Vandersteen, C., Demarcy, T., Gnansia, D., Raffaelli, C., Guevara, N., Delingette, H. A deep learning based fast signed distance map generation. arXiv preprint arXiv:2005.12662 (2020)

  34. Tang, T.Y., De Martini, D., Barnes, D., Newman, P.: RSL-Net: localising in satellite images from radar on the ground. IEEE Robot. Autom. Lett. 5(2), 1087–1094 (2020)

    Article  Google Scholar 

  35. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D. Image segmentation using deep learning: a survey. arXiv preprint arXiv:2001.05566 (2020)

  36. Zhou, F., Yang, S., Fujita, H., Chen, D., Wen, C. Deep learning fault diagnosis method based on global optimization GAN for unbalanced data. Knowl. Based Syst. 187, 104837 (2020)

    Google Scholar 

  37. Zihao, W.A.N.G., Vandersteen, C., Demarcy, T., Gnansia, D., Raffaelli, C., Guevara, N., Delingette, H. A deep learning based fast signed distance map generation

    Google Scholar 

  38. Tang, H., Xu, D., Yan, Y., Torr, P.H., Sebe, N. Local class-specific and global image-level generative adversarial networks for semantic-guided scene generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7870–7879 (2020)

    Google Scholar 

  39. Ye, H., Liang, L., Li, G.Y., Juang, B.H.: Deep learning-based end-to-end wireless communication systems with conditional GANs as unknown channels. IEEE Trans. Wireless Commun. 19(5), 3133–3143 (2020)

    Google Scholar 

  40. Waheed, A., Goyal, M., Gupta, D., Khanna, A., Al-Turjman, F., Pinheiro, P.R. Covidgan: Data augmentation using auxiliary classifier gan for improved covid-19 detection. IEEE Access 8, 91916–91923 (2020)

    Google Scholar 

  41. Seddik, M.E.A., Louart, C., Tamaazousti, M., Couillet, R. Random matrix theory proves that deep learning representations of gan-data behave as gaussian mixtures. arXiv preprint arXiv:2001.08370 (2020)

  42. Xu, D., Wei, C., Peng, P., Xuan, Q., Guo, H. GE-GAN: a novel deep learning framework for road traffic state estimation. Transp. Res. Part C Emerg. Technol. 117, 102635 (2020)

    Google Scholar 

  43. Loey, M., Smarandache, F., Khalifa, N.E.M. Within the lack of chest COVID-19 X-ray dataset: a novel detection model based on GAN and deep transfer learning. Symmetry 12(4), 651 (2020)

    Google Scholar 

  44. Beery, S., Liu, Y., Morris, D., Piavis, J., Kapoor, A., Joshi, N., Perona, P. Synthetic examples improve generalization for rare classes. In: The IEEE Winter Conference on Applications of Computer Vision, pp. 863–873 (2020)

    Google Scholar 

  45. Fu, J., Singhrao, K., Zhong, X., Gao, Y., Qi, S., Yang, Y., Lewis, J.H. An automatic deep learning-based workflow for glioblastoma survival prediction using pre- operative multimodal MR images. arXiv preprint arXiv:2001.11155 (2020)

  46. Li, W.H., Xiang, S., Nie, W.Z., Song, D., Liu, A.A., Li, X.Y., Hao, T. Joint deep feature learning and unsupervised visual domain adaptation for cross-domain 3D object retrieval. Inf. Process. Manage. 57(5), 102275 (2020)

    Google Scholar 

  47. Wang, W., Alameda-Pineda, X., Xu, D., Ricci, E., Sebe, N. Learning how to smile: expression video generation with conditional adversarial recurrent nets. IEEE Trans. Multimedia (2020)

    Google Scholar 

  48. Zhu, H., Tong, D., Zhang, L., Wang, S., Wu, W., Tang, H., Li, B.: Temporally downsampled cerebral CT perfusion image restoration using deep residual learning. Int. J. Comput. Assist. Radiol. Surg. 15(2), 193–201 (2020)

    Article  Google Scholar 

  49. Alom, M.Z., Taha, T.M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M.S., Asari, V.K. The history began from alexnet: A comprehensive survey on deep learning approaches. arXiv preprint arXiv:1803.01164 (2018)

  50. Jin, Y. et al. Towards the automatic anime characters creation with generative adversarial networks” demonstrates the training and use of a GAN for generating faces of anime characters (i.e. Japanese comic book characters) (2017)

    Google Scholar 

  51. Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J. Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. In: Advances in Neural Information Processing Systems, pp. 82–90 (2016)

    Google Scholar 

  52. Mittal, M., Arora, M., Pandey, T., Goyal, L.M. Image segmentation using deep learning techniques in medical images. In: Advancement of Machine Intelligence in Interactive Medical Image Analysis, pp. 41–63. Springer, Singapore (2020)

    Google Scholar 

  53. Kaur, B., Sharma, M., Mittal, M., Verma, A., Goyal, L.M., Hemanth, D.J.: An improved salient object detection algorithm combining background and foreground connectivity for brain image analysis. Comput. Electr. Eng. 71, 692–703 (2018)

    Article  Google Scholar 

  54. Verma, O.P., Roy, S., Pandey, S.C., Mittal, M. (eds.) Advancement of Machine Intelligence in Interactive Medical Image Analysis. Springer Nature (2019)

    Google Scholar 

  55. Dash, S., Acharya, B.R., Mittal, M., Abraham, A. Deep Learning Techniques for Biomedical and Health Informatics. In: . Kelemen, A. (ed.). Springer Nature (2020)

    Google Scholar 

  56. Mittal, A., Kumar, D., Mittal, M., Saba, T., Abunadi, I., Rehman, A., Roy, S.: Detecting pneumonia using convolutions and dynamic capsule routing for chest X-ray images. Sensors 20(4), 1068 (2020)

    Article  Google Scholar 

  57. Aggarwal, A., Dhindsa, K.S., Suri, P.K.: A pragmatic assessment of approaches and paradigms in software risk management frameworks. Int. J. Nat. Comput. Res. (IJNCR) 9(1), 13–26 (2020)

    Article  Google Scholar 

  58. Aggarwal, A., Dhindsa, K.S., Suri, P.K.: Performance-aware approach for software risk management using random forest algorithm. Int. J. Softw. Innov. (IJSI) 9(1), 12–19 (2021)

    Article  Google Scholar 

  59. Aggarwal, A., Gaba, S., & Mittal, M. A comparative investigation of consensus algorithms in collaboration with IoT and blockchain. In: Transforming Cybersecurity Solutions Using Blockchain, 115p (2021)

    Google Scholar 

  60. Aggarwal, A., Gaba, S., Nagpal, S., Vig, B. Bio-Inspired Routing in VANET. In: Cloud and IoT Based Vehicular Ad-Hoc Networks, 199p (2021)

    Google Scholar 

  61. Gaba, S., Aggarwal, A., Nagpal, S. Role of machine learning for Ad Hoc networks. In: Cloud and IoT Based Vehicular Ad-Hoc Networks, 269p (2021)

    Google Scholar 

  62. Sharma, A., Kumar, S., Gaba, S., Singla, S., et al. A genetic improved quantum cryptography model to optimize network communication, Int. J. Innov. Technol. Exploring Eng. (IJITEE) 8(9S), 256–259 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aggarwal, A., Gaba, S., Nagpal, S., Arya, A. (2022). A Deep Analysis on the Role of Deep Learning Models Using Generative Adversarial Networks. In: Ahmed, K.R., Hexmoor, H. (eds) Blockchain and Deep Learning. Studies in Big Data, vol 105. Springer, Cham. https://doi.org/10.1007/978-3-030-95419-2_9

Download citation

Publish with us

Policies and ethics