Skip to main content

Cross-modal Data Linkage for Common Entity Identification

  • 554 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 13088)

Abstract

Multi-modal data is becoming pervasive in the digital era, providing compelling scenarios that require cross-modal linkage such as linking image data with databases. We outline a critical matching/linking task within that space, which we call cross-modal common entity identification. This involves linking images with structured databases with the aid of available unstructured information. We propose a framework and method, ICE, which embodies a structured approach for the same involving information extraction from images and person matching followed by identifying a common entity that unites people represented in the image. We curate data sources from the entertainment domain, upon which we illustrate the effectiveness of our method. We hope ICE will generate interest in other tasks within the realm of multi-modal data processing in the intersection of image processing, NLP and databases.

P. Prakash, J. Rawal and S. Gupta—Contributed equally to this research.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-95408-6_23
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-95408-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Notes

  1. 1.

    https://github.com/seatgeek/fuzzywuzzy.

References

  1. Face++ API for facial recognition. https://console.faceplusplus.com/documents/5679127

  2. Google Vision API. https://cloud.google.com/vision

  3. KariosAPI for Facial Recognition. https://rapidapi.com/KairosAPI/api/kairos-face-recognition

  4. Bhadra, S.: Multi-view data completion. In: Deepak, P., Jurek-Loughrey, A. (eds.) Linking and Mining Heterogeneous and Multi-view Data. USL, pp. 1–25. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01872-6_1

    CrossRef  Google Scholar 

  5. Deepak, P., Jurek-Loughrey, A. (eds.): Linking and Mining Heterogeneous and Multi-view Data. USL, Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01872-6

    CrossRef  Google Scholar 

  6. DeFazio, S., Daoud, A., Smith, L.A., Srinivasan, J.: Integrating IR and RDBMS using cooperative indexing. In: SIGIR (1995)

    Google Scholar 

  7. Gupta, N., Singh, S., Roth, D.: Entity linking via joint encoding of types, descriptions, and context. In: EMNLP, pp. 2681–2690 (2017)

    Google Scholar 

  8. Jurek-Loughrey, A., Deepak, P.: Semi-supervised and unsupervised approaches to record pairs classification in multi-source data linkage. In: Deepak, P., Jurek-Loughrey, A. (eds.) Linking and Mining Heterogeneous and Multi-view Data. USL, pp. 55–78. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01872-6_3

    CrossRef  Google Scholar 

  9. Lahat, D., Adali, T., Jutten, C.: Multimodal data fusion: an overview of methods, challenges, and prospects. Proc. IEEE 103(9), 1449–1477 (2015)

    CrossRef  Google Scholar 

  10. Radev, D.R., Qi, H., Wu, H., Fan, W.: Evaluating web-based question answering systems. In: LREC (2002)

    Google Scholar 

  11. Roy, P., Mohania, M., Bamba, B., Raman, S.: Towards automatic association of relevant unstructured content with structured query results. In: CIKM (2005)

    Google Scholar 

  12. Sayers, A., Ben-Shlomo, Y., Blom, A.W., Steele, F.: Probabilistic record linkage. Int. J. Epidemiol. 45(3), 954–964 (2016)

    CrossRef  Google Scholar 

  13. Shen, W., Wang, J., Han, J.: Entity linking with a knowledge base: Issues, techniques, and solutions. IEEE TKDE 27(2), 443–460 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak P .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Prakash, P., Rawal, J., Gupta, S., P, D., Mohania, M. (2022). Cross-modal Data Linkage for Common Entity Identification. In: , et al. Advanced Data Mining and Applications. ADMA 2022. Lecture Notes in Computer Science(), vol 13088. Springer, Cham. https://doi.org/10.1007/978-3-030-95408-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95408-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95407-9

  • Online ISBN: 978-3-030-95408-6

  • eBook Packages: Computer ScienceComputer Science (R0)