Skip to main content

Evolving Deep Parallel Neural Networks for Multi-Task Learning

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13156))

  • 1928 Accesses

Abstract

Multi-Task Learning (MTL) can perform multiple tasks simultaneously with a single model, and can achieve competitive performance for each individual task. In recent years, the Deep Neural Networks (DNNs) based models have demonstrated their advantages in the field of MTL. Yet, most of such models are commonly manually designed with expertise through performing trial and error experiments, which is prohibitively ineffective. In view of this, we design a method based on evolutionary algorithm in this paper, named EVO-MTL, to automate the parallel DNN architectures for effectively addressing the MTL problems. Specifically, our main idea is to evolve the connections between the parallel task-specific backbone networks, and then leverage the useful information contained in the tasks by fusing the task-specific features. In order to verify the effectiveness of the proposed algorithm, the experiments are designed to compare with recent MTL methods including the manually designed and automatically designed. The experimental results demonstrate that the proposed algorithm can outperform the carefully hand-designed methods. In addition, the proposed algorithm can also attain promising competitive performance in balancing multi-task conflicts compared with the DNN architecture searched by state-of-the-art automated MTL method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  2. Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3150–3158 (2016)

    Google Scholar 

  3. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley (2001)

    Google Scholar 

  4. Dunford, R., Su, Q., Tamang, E.: The Pareto principle. Plymouth Stud. Sci. 7, 140–148 (2014)

    Google Scholar 

  5. Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 109–117 (2004)

    Google Scholar 

  6. Gao, Y., Bai, H., Jie, Z., Ma, J., Jia, K., Liu, W.: MTL-NAS: task-agnostic neural architecture search towards general-purpose multi-task learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11543–11552 (2020)

    Google Scholar 

  7. Gao, Y., Ma, J., Zhao, M., Liu, W., Yuille, A.L.: NDDR-CNN: layerwise feature fusing in multi-task CNNs by neural discriminative dimensionality reduction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3205–3214 (2019)

    Google Scholar 

  8. Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3588–3597 (2018)

    Google Scholar 

  9. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018)

    Google Scholar 

  10. Kokkinos, I.: UberNet: training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6129–6138 (2017)

    Google Scholar 

  11. Li, B., Shen, C., Dai, Y., Van Den Hengel, A., He, M.: Depth and surface normal estimation from monocular images using regression on deep features and hierarchical CRFs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1119–1127 (2015)

    Google Scholar 

  12. Lin, G., Milan, A., Shen, C., Reid, I.: RefineNet: multi-path refinement networks for high-resolution semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1925–1934 (2017)

    Google Scholar 

  13. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  14. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. arXiv preprint arXiv:1806.09055 (2018)

  15. Liu, S., Johns, E., Davison, A.J.: End-to-end multi-task learning with attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1871–1880 (2019)

    Google Scholar 

  16. Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G.: A survey on evolutionary neural architecture search. arXiv preprint arXiv:2008.10937 (2020)

  17. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  18. Lounici, K., Pontil, M., Tsybakov, A.B., Van De Geer, S.: Taking advantage of sparsity in multi-task learning. arXiv preprint arXiv:0903.1468 (2009)

  19. Lu, Y., Kumar, A., Zhai, S., Cheng, Y., Javidi, T., Feris, R.: Fully-adaptive feature sharing in multi-task networks with applications in person attribute classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5334–5343 (2017)

    Google Scholar 

  20. Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Cross-stitch networks for multi-task learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3994–4003 (2016)

    Google Scholar 

  21. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1520–1528 (2015)

    Google Scholar 

  22. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via parameter sharing. arXiv preprint arXiv:1802.03268 (2018)

  23. Qi, X., Liao, R., Liu, Z., Urtasun, R., Jia, J.: GeoNet: geometric neural network for joint depth and surface normal estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 283–291 (2018)

    Google Scholar 

  24. Real, E., et al.: Large-scale evolution of image classifiers. arXiv preprint arXiv:1703.01041 (2017)

  25. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  26. Ruder, S.: An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098 (2017)

  27. Ruder, S., Bingel, J., Augenstein, I., Søgaard, A.: Learning what to share between loosely related tasks. arXiv (2017)

    Google Scholar 

  28. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  30. Sun, Y., Xue, B., Zhang, M., Yen, G.G., Lv, J.: Automatically designing CNN architectures using the genetic algorithm for image classification. IEEE Trans. Cybern. 50, 3840–3854 (2020)

    Article  Google Scholar 

  31. Thung, K.-H., Wee, C.-Y.: A brief review on multi-task learning. Multimed. Tools Appli. 77(22), 29705–29725 (2018). https://doi.org/10.1007/s11042-018-6463-x

    Article  Google Scholar 

  32. Vandenhende, S., Georgoulis, S., Proesmans, M., Dai, D., Van Gool, L.: Revisiting multi-task learning in the deep learning era. arXiv preprint arXiv:2004.13379 (2020)

  33. Vasconcelos, J., Ramirez, J.A., Takahashi, R., Saldanha, R.: Improvements in genetic algorithms. IEEE Trans. Magn. 37(5), 3414–3417 (2001)

    Article  Google Scholar 

  34. Wang, X., Fouhey, D., Gupta, A.: Designing deep networks for surface normal estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 539–547 (2015)

    Google Scholar 

  35. Zhang, C.H., Huang, J., et al.: The sparsity and bias of the lasso selection in high-dimensional linear regression. Ann. Stat. 36(4), 1567–1594 (2008)

    MathSciNet  MATH  Google Scholar 

  36. Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Facial landmark detection by deep multi-task learning. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 94–108. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_7

    Chapter  Google Scholar 

  37. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578 (2016)

  38. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanan Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, J., Sun, Y. (2022). Evolving Deep Parallel Neural Networks for Multi-Task Learning. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2021. Lecture Notes in Computer Science(), vol 13156. Springer, Cham. https://doi.org/10.1007/978-3-030-95388-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95388-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95387-4

  • Online ISBN: 978-3-030-95388-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics