Skip to main content

Water Losses Management in Urban Water Distribution Systems

  • Chapter
  • First Online:
Water and Wastewater Management

Part of the book series: Water and Wastewater Management ((WWWE))

Abstract

Management of water losses in water distribution systems is crucial for sustainable management of water resources. A significant amount of water is annually lost in water supply systems. Water losses in a water distribution system consist of apparent and real losses. Real losses are mainly due to leakage from pipes, service connections and overflows at storage tanks, while apparent losses result from unauthorized consumption, metering inaccuracies, and data handling errors. The key step to control water losses is to understand the concept of water losses. Evaluating performance of water supply services by implementing suitable performance indicators (PIs) is also vital for sustainable water management. Afterwards, assessing components of water losses and required intervention tools to control water losses can be implemented. This chapter aims to provide an understanding of water losses management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang XD. Conjunctive surface water and groundwater management under climate change. Front Environ Sci. 2015;3.

    Google Scholar 

  2. The World Bank Press Release: The World Bank and the international water association to establish a partnership to reduce water losses. September 2016.

    Google Scholar 

  3. Lambert A, Hirner W. Losses from water supply systems: standard terminology and recommended performance measures. IWA's Blue Pages. 2000. pp. 1–13.

    Google Scholar 

  4. Alegre H, Hirner W, Baptista JM, Parena R. Performance indicators for water supply services. 1st ed. London: IWA Publishing; 2000.

    Google Scholar 

  5. Thornton J, Sturm R, Kunkel GA. Water loss control. New York: McGraw-Hill; 2008.

    Google Scholar 

  6. McKenzie R, Seago C. Assessment of real losses in potable water distribution systems: some recent developments. In: Wilderer P, editor. 4th world water congress: innovation in water supply - reuse and efficiency. London: IWA Publishing; 2005. p. 33–40.

    Google Scholar 

  7. Karadirek IE, Kara S, Yilmaz G, Muhammetoglu A, Muhammetoglu H. Implementation of hydraulic modelling for water-loss reduction through pressure management. Water Resour Manag. 2012;26(9):2555–68.

    Article  Google Scholar 

  8. Aboelnga H, Saidan M, Al-Weshah R, Sturm M, Ribbe L, Frechen FB. Component analysis for optimal leakage management in Madaba, Jordan. J Water Supply Res Technol-Aqua. 2018;67(4):384–96.

    Article  Google Scholar 

  9. Karadirek IE. Non revenue water management: current trends and future prospects. Fresen Environ Bull. 2019;28(7):5226–33.

    Google Scholar 

  10. Ahopelto S, Vahala R. Cost-benefit analysis of leakage reduction methods in water supply networks. Water. 2020;12(1):15.

    Article  Google Scholar 

  11. Tardelli FJ. Control of e ReduçãoPerdas. In Abastecimento de Água, 3rd. São Paulo: Departamento de Engenharia e HidráulicaSanitária, Polytechnic School of the University of São Paulo; 2006.

    Google Scholar 

  12. Fanner P, Thornton J. The importance of real loss component analysis for determining the correct intervention strategy. In: Conference the importance of real loss component analysis for determining the correct intervention strategy, Halifax, Nova Scotia, Canada.

    Google Scholar 

  13. Lambert A. Accounting for losses: the bursts and background concept. Water Environ J. 1994;8(2):205–14.

    Article  Google Scholar 

  14. Alegre H, Baptista JM, Cabrera JE, Cubillo F, Duarte P, Hirner W, et al. Performance indicators for water supply services, 2nd edn. IWA Publishing; 2006.

    Google Scholar 

  15. Alegre H, Baptista JM, Cabrera JE, Cubillo F, Duarte P, Hirner W, et al. Performance indicators for water supply services, 3rd edn. IWA Publishing;2017.

    Google Scholar 

  16. Haider H, Sadiq R, Tesfamariam S. Performance indicators for small- and medium-sized water supply systems: a review. Environ Rev. 2014;22(1):1–40.

    Article  Google Scholar 

  17. Lambert AO, Brown TG, Takizawa M, Weimer D. A review of performance indicators for real losses from water supply systems. J Water Serv Res Technol-Aqua. 1999;48(6):227–37.

    Article  Google Scholar 

  18. Farley M, Trow S. Losses in water distribution networks : a practitioner’s guide to assessment, monitoring and control. 2003.

    Google Scholar 

  19. Karadirek IE. An experimental analysis on accuracy of customer water meters under various flow rates and water pressures. J Water Supply Res Technol-Aqua. 2020;69(1):18–27.

    Article  Google Scholar 

  20. Arregui FJ, Cabrera E, Cobacho R, García-Serra J. Reducing apparent losses caused by meters inaccuracies. Water Pract Technol. 2006;1(4):wpt2006093-wpt.

    Google Scholar 

  21. Arregui FJ, Soriano J, Garcia-Serra J, Cobacho R. Proposal of a systematic methodology to estimate apparent losses due to water meter inaccuracies. Water Sci Technol-Water Supply. 2013;13(5):1324–30.

    Article  Google Scholar 

  22. Arregui FJ, Balaguer M, Soriano J, Garcia-Serra J. Quantifying measuring errors of new residential water meters considering different customer consumption patterns. Urban Water J. 2016;13(5):463–75.

    Article  Google Scholar 

  23. Mutikanga HE, Sharma SK, Vairavamoorthy K. Assessment of apparent losses in urban water systems. Water Environ J. 2011;25(3):327–35.

    Article  Google Scholar 

  24. Al-Washali TS, Kennedy M. Methods of assessment of water losses in water supply systems: a review. Water Resour Manag. 2016;30(14):4985–5001.

    Google Scholar 

  25. Covas D, Jacob A, Ramos H. Bottom-up analysis for assessing water losses: a case study. In: Water distribution systems analysis symposium; 2006–2008. pp. 1–19.

    Google Scholar 

  26. Tabesh M, Yekta AHA, Burrows R. An integrated model to evaluate losses in water distribution systems. Water Resour Manag. 2009;23(3):477–92.

    Article  Google Scholar 

  27. Alkasseh JMA, Adlan MN, Abustan I, Aziz HA, Hanif AM. Applying minimum night flow to estimate water loss using statistical modeling: a case study in Kinta Valley, Malaysia. Water Resour Manag 2013;27(5):1439–55.

    Google Scholar 

  28. Hamilton S, McKenzie R. Water management and water loss. London: IWA Publ; 2014.

    Book  Google Scholar 

  29. Ferrari G, Savic D, Becciu G. Graph-theoretic approach and sound engineering principles for design of district metered areas. J Water Resour Plan Manag. 2014;140(12):13.

    Article  Google Scholar 

  30. May J. Leakage, pressure and control. In: BICS international conference on leakage control investigation in underground assets, March 1994. London, UK.

    Google Scholar 

  31. Cassa AM, van Zyl JE, Laubscher RF. A numerical investigation into the effect of pressure on holes and cracks in water supply pipes. Urban Water J. 2010;7(2):109–20.

    Article  CAS  Google Scholar 

  32. Thornton J. Water loss control manual. Estados Unidos: McGraw-Hill; 2002.

    Google Scholar 

  33. van Zyl JE, Cassa AM. Modeling elastically deforming leaks in water distribution pipes. J Hydraul Eng-ASCE. 2014;140(2):182–9.

    Article  Google Scholar 

  34. Schwaller J, van Zyl JE. Modeling the pressure-leakage response of water distribution systems based on individual leak behavior. J Hydraul Eng-ASCE. 2015;141(5):8.

    Article  Google Scholar 

  35. van Zyl JE, Malde R. Evaluating the pressure-leakage behaviour of leaks in water pipes. J Water Supply Res Technol-Aqua. 2017;66(5):287–99.

    Article  Google Scholar 

  36. Niebuhr D, Nsanzubuhoro R, van Zyl JE. Field experience with pressure-based leakage characterisation of bulk water pipelines. Urban Water J. 2019;16(10):709–17.

    Article  Google Scholar 

  37. Marzola I, Alvisi S, Franchini M. Analysis of MNF and FAVAD model for leakage characterization by exploiting smart-metered data: the case of the Gorino Ferrarese (FE-Italy) District. Water. 2021;13(5):15.

    Article  Google Scholar 

  38. Fontana N, Giugni M, Marini G. Experimental assessment of pressure-leakage relationship in a water distribution network. Water Sci Technol-Water Supply. 2017;17(3):726–32.

    Article  Google Scholar 

  39. Ferrante M, Massari C, Todini E, Brunone B, Meniconi S. Experimental investigation of leak hydraulics. J Hydroinform. 2013;15(3):666–75.

    Google Scholar 

  40. Ferraiuolo R, De Paola F, Fiorillo D, Caroppi G, Pugliese F. Experimental and numerical assessment of water leakages in a PVC-A pipe. Water. 2020;12(6):16.

    Article  Google Scholar 

  41. Abravani M, Saghi H. Introducing a novel flexible conjunction system to pressure control in water distribution networks. Water Resour Manag 2017;31(13):4323–38.

    Google Scholar 

  42. Lambert AO, Tveit OA, Abdin NAZ, Lazzari L, Lorenze H, Lee H, Farley M, Masakat E, Suphani R, Esko H, Johnson K, Rapinat M, Dohnal P, McKenzie R, Manesc A, Weimer D, Lai SKS, Somos E, Monteir A, Davis S, Martinez F, Lo SL, Onep. International report: water losses management and techniques. In: Wilderer PA, Arvin E, Blackwell L, Hamoda MF, Mikkelsen PS, Mino T, Morgenroth E, Otterpohl R, Pons MN, Rauch W, Stephenson T, Ujang Z, Jianrong Z (Eds.) 2nd world water congress: water distribution and water services management. London: IWA Publishing; 2002. pp. 1–20.

    Google Scholar 

  43. Vicente DJ, Garrote L, Sanchez R, Santillan D. Pressure management in water distribution systems: current status, proposals, and future trends. J Water Resour Plan Manage-ASCE. 2016;142(2):13.

    Article  Google Scholar 

  44. Bamezai A. Is system pressure reduction a valuable water conservation tool? Preliminary evidence from the Irvine Ranch water district. Conference is system pressure reduction a valuable water conservation tool? Preliminary evidence from the Irvine Ranch water district.

    Google Scholar 

  45. Carravetta A, Del Giudice G, Fecarotta O, Ramos HM. Energy production in water distribution networks: A PAT design strategy. Water Resour Manag. 2012;26(13):3947–59.

    Article  Google Scholar 

  46. Carravetta AD, Del Giudice G, Fecarotta O, Ramos HM. Pump as turbine (PAT) design in water distribution network by system effectiveness. Water. 2013;5(3):1211–25.

    Google Scholar 

  47. Puleo V, Fontanazza CM, Notaro V, De Marchis M, Freni G, La Loggia G. Pumps as turbines (PATs) in water distribution networks affected by intermittent service. J Hydroinform. 2014;16(2):259–71.

    Article  Google Scholar 

  48. Fontana N, Giugni M, Glielmo L, Marini G. Real time control of a prototype for pressure regulation and energy production in water distribution networks. J Water Resour Plan Manage-ASCE. 2016;142(7):9.

    Article  Google Scholar 

  49. Muhammetoglu A, Karadirek IE, Ozen O, Muhammetoglu H. Full-scale PAT application for energy production and pressure reduction in a water distribution network. J Water Resour Plan Manage-ASCE. 2017;143(8):12.

    Article  Google Scholar 

  50. Ghorbanian V, Guo Y, Karney BW. Field data-based methodology for estimating the expected pipe break rates of water distribution systems. J Water Resour Plan Manage-ASCE. 2016;142(10):11.

    Google Scholar 

  51. Monsef H, Naghashzadegan M, Farmani R, Jamali A. Pressure management in water distribution systems in order to reduce energy consumption and background leakage. J Water Supply Res Technol-Aqua. 2018;67(4):397–403.

    Article  Google Scholar 

  52. Xu Q, Chen Q, Ma J, Blanckaert K, Wan Z. Water saving and energy reduction through pressure management in urban water distribution networks. Water Resour Manag. 2014;28(11):3715–26.

    Google Scholar 

  53. Ferrari G, Savic D. Economic performance of DMAs in water distribution systems. In: Ulanicki BK, Boxall J (Eds.) Computing and control for the water industry. Amsterdam: Elsevier Science Bv; 2015. pp. 189–95.

    Google Scholar 

  54. Li R, Huang HD, Xin KL, Tao T. A review of methods for burst/leakage detection and location in water distribution systems. Water Sci Technol-Water Supply. 2015;15(3):429–41.

    Article  Google Scholar 

  55. Shammas NK, Al-Dhowalia KH. Effect of pressure on leakage rate in water distribution networks. J King Saud Univ Eng Sci. 1993;5(2):213–26.

    Google Scholar 

  56. Maddison LA, Gagnon GA, Eisnor JD. Corrosion control strategies for the Halifax regional distribution system. Can J Civ Eng. 2001;28(2):305–13.

    Article  CAS  Google Scholar 

  57. Kanakoudis V, Tsitsifli S. Results of an urban water distribution network performance evaluation attempt in Greece. Urban Water J. 2010;7(5):267–85.

    Article  Google Scholar 

  58. Rizzo A, Vermersch M, John SG, Micallef G, Riolo S, Pace R. Apparent water loss control: the way forward. Water. 2007;21(9):45–7.

    Google Scholar 

  59. Arregui FJ, Gavara FJ, Soriano J, Pastor-Jabaloyes L. Performance analysis of ageing single-jet water meters for measuring residential water consumption. Water. 2018;10(5):18.

    Article  Google Scholar 

  60. Criminisi A, Fontanazza CM, Freni G, La Loggia G. Evaluation of the apparent losses caused by water meter under-registration in intermittent water supply. Water Sci Technol. 2009;60(9):2373–82.

    Article  CAS  Google Scholar 

  61. Kanakoudis V, Tsitsifli S. Socially fair domestic water pricing: who is going to pay for the non-revenue water? Desalin Water Treat. 2016;57(25):11599–609.

    Google Scholar 

  62. Arregui FJ, Soriano J, Cabrera E, Cobacho R. Nine steps towards a better water meter management. Water Sci Technol. 2012;65(7):1273–80.

    Article  CAS  Google Scholar 

  63. Tabesh M, Delavar MR. Application of integrated GIS and hydraulic models for unaccounted for water studies in water distribution systems. Leiden: A a Balkema Publishers; 2003.

    Book  Google Scholar 

  64. Van Zyl JE. Introduction to integrated water meter management. Gezina, South Africa: Water Research Commission (WRC). 2011.

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank Akdeniz University, Necmettin Erbakan University and EXCEED Swindon project funded by DAAD (German Academic Exchange Service).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ethem Karadirek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karadirek, I.E., Aydin, M.E. (2022). Water Losses Management in Urban Water Distribution Systems. In: Bahadir, M., Haarstrick, A. (eds) Water and Wastewater Management. Water and Wastewater Management. Springer, Cham. https://doi.org/10.1007/978-3-030-95288-4_6

Download citation

Publish with us

Policies and ethics