Skip to main content

Irrigation Management by Using Digital Technologies

  • Chapter
  • First Online:
Water and Wastewater Management

Abstract

Population growth and changes in people's consumption habits cause an increase in the need for agricultural production. All over the world, generally, most of the water resources under control are used for irrigation in agriculture. Especially in arid and semi-arid regions, plant production without irrigation is often not economically sustainable. Although most of the agricultural needs are provided from irrigated agricultural areas, the amount of crops produced per unit of water is relatively low due to the low irrigation efficiency. Pressurized and modern irrigation systems are supported and encouraged by governments in many countries. However, the widespread use of these systems cannot provide the expected increase in irrigation efficiency, because irrigation management is more critical than irrigation infrastructure in irrigation efficiency. During the 1990's, to improve water use efficiency in agriculture, training farmers and using computer-based decision support systems about irrigation were essential activities. Recently, irrigation management systems based on digital technologies have come to the fore. These digital-based systems have made it possible for farmers to use recent scientific approaches related to soil, plant, atmosphere, and water relationships. These systems primarily work based on data obtained from sensors used to monitor soil, vegetation, and meteorological parameters, and spectral and thermal images acquired by satellite and unmanned aerial vehicles (UAV). Many computer software and applications for portable devices have been developed to convert these data into information to be used in irrigation management. By integrating these systems with equipment that will allow the irrigation systems to be operated automatically, producers can have the opportunity to perform much more precise and/or variable rate irrigation. These digital systems can be used in individual farms, large irrigation networks, and water resources management in water basins. This review aims to evaluate the current research studies and developed systems for the use of digital technologies in irrigation management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ALEXI:

Atmosphere-Land Exchange Inverse

BLUE:

Blue region of electromagnetic spectrum

CWSI:

Crop Water Stress Index

ETa:

Actual evapotranspiration

ETc:

The evapotranspiration of a selected crop

EVI:

Enhanced Vegetation Index

FDR:

Frequency domain reflectometers

G:

Soil heat flux

GREEN:

Green region of electromagnetic spectrum

H:

Sensible heat flux

Kc:

Plant coefficient

Kcb:

Basal plant coefficient

Ky:

Water yield response factor

LE:

Latent heat flux

LSWI:

Land Surface Water Index

LWP:

Leaf water potential

MAD:

Moisture Allowable Deficit

METRIC:

Mapping ET at high resolution and with Internalized Calibration

NDVI:

Normalized Difference Vegetation Index

NDWI:

Normalized Difference Water Index

NIR:

Near Infrared region of electromagnetic spectrum

NMM:

Neutron moisture meter

RED:

Red region of electromagnetic spectrum

RED-EDGE:

Red-Edge region of electromagnetic spectrum

Rn:

Net radiation

SAVI:

Soil Adjusted Vegetation Index

SEBAL:

Surface Energy Balance Algorithm for Land

SEBS:

Surface Energy Balance System

SR:

Simple Ratio

SWIR:

Short wave infrared region of electromagnetic spectrum

SWP:

Stem water potential

TAW:

Total Available Water

TDR:

Time Domain Reflectometer

TSEB:

Two Source Energy Balance

Ts–Ta:

The difference between surface temperature and atmosphere temperature

UAV:

Un-manned aerial vehicle

VRI:

Variable rate irrigation

WDI:

Water Deficit Index

WUE:

Water use efficiency

εa:

Dielectric permittivity

References

  1. Anderson MC, Allen RG, Morse A, Kustas WP. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens Environ. 2012;122:50–65.

    Google Scholar 

  2. UNESCO, United Nations Educational, Scientific and Cultural Organization. Securing the food supply. Paris: UNESCO; 2001.

    Google Scholar 

  3. Al-Naji A, Fakhri AB, Gharghan SK, Chahl J. Soil color analysis based on a RGB camera and an artificial neural network towards smart irrigation: a pilot study. Heliyon. 2021;7(1):e06078.

    Google Scholar 

  4. FAO. Water for sustainable food and agriculture a report produced for the G20 Presidency of Germany food and agriculture organization of the United Nations—FAO, Rome; 2017.

    Google Scholar 

  5. FAO. Water and agriculture an issues note produced for the G20 Presidency of the Kingdom of Saudi Arabia—FAO, Rome; 2021.

    Google Scholar 

  6. Quebrajo L, Perez-Ruiz M, Pérez-Urrestarazu L, Martínez G, Egea G. Linking thermal imaging and soil remote sensing to enhance irrigation management of sugar beet. Biosys Eng. 2018;165:77–87.

    Google Scholar 

  7. Campos N, Rocha AR, Gondim R, Coelho da Silva TL, Gomes DG. Gomes smart & green: an internet-of-things framework for smart irrigation. Sensors. 2020;20:190.

    Google Scholar 

  8. Saccon P. Water for agriculture, irrigation management. Appl Soil Ecol. 2018;123:793–6.

    Google Scholar 

  9. Zhang Q, Singh VP, Sun P, Chen X, Zhang Z, Li J. Precipitation and streamflow changes in China: changing patterns, causes and implications. J Hydrol. 2011;410:204–16.

    Google Scholar 

  10. Vörömarty CJ, Green P, Salisbury J, Lammers RB. Global water resources: vulnerability from climate change and population growth. Science. 2000;289:284–8.

    Google Scholar 

  11. Akmal M, Janssens MJJ. Productivity and light use efficiency of perennial ryegrass with contrasting water and nitrogen supplies. Field Crops Res. 2004;88:143–55.

    Google Scholar 

  12. Gonzalez-Dugo B, Durand JL, Gastal F, Picon-Cochard C. Shortterm response of the nitrogen nutrition status of tall fescue and Italian ryegrass swards under water deficit. Aust J Agric Res. 2005;56:1269–76.

    CAS  Google Scholar 

  13. Haverkort A. Handbook of precision agriculture. Princ Appl Euphytica. 2007;156(1):269–70.

    Google Scholar 

  14. Jury WA, Vaux H. The role of science in solving the world’s emerging water problems. Proc Natl Acad Sci. 2005;102(44):15715–20.

    CAS  Google Scholar 

  15. Rosegrant MW, Ringler C, Zhu T. Water for agriculture: Maintaining food security under growing scarcity. Annu Rev Environ Resour. 2009;34(1):205–22.

    Google Scholar 

  16. Zhu T, Ringler C, Rosegrant MW. Viewing agricultural water management through a systems analysis lens. Water Resour Res. 2019;55(3):1778–91.

    Google Scholar 

  17. Nikolidakis SA, Kandris D, Vergados DD, Douligeris C. Energy efficient automated control of irrigation in agriculture by using wireless sensor networks. Comput Electron Agric. 2015;113:154–63.

    Google Scholar 

  18. Ferrarezi RS, Dove SK, van Iersel MW. An automated system for monitoring soil moisture and controlling irrigation using low-cost open-source microcontrollers. HortTechnology. 2015;25(1):110–8.

    Google Scholar 

  19. Jain P, Kumar P, Palwalia D. Irrigation management system with micro-controller application. In: 2017 1st international conference on electronics, materials engineering and nano-technology (IEMENTech). IEEE; 2017. pp 1–6.

    Google Scholar 

  20. Taneja K, Bhatia S. Automatic irrigation system using Arduino UNO. In: 2017 international conference on intelligent computing and control systems (ICICCS). IEEE; 2017. pp 132–5.

    Google Scholar 

  21. Tunca E, Köksal ES, Çetin S, Ekiz NM, Balde H. Yield and leaf area index estimations for sunflower plants using unmanned aerial vehicle images. Environ Monit Assess. 2018;190(11):1–12.

    Google Scholar 

  22. Shaw BT. Soil physical conditions and plant growth. New York: Academic Press; 1952.

    Google Scholar 

  23. Kirkham D. Soil physics and soil fertility. Bulletin des Recherches Agronomiques de Gembloux Faculté des Sciences Agronomiques de l’État (new series). 1973;8(2):60–88.

    Google Scholar 

  24. Kirkham MB. Principles of soil and plant water relations. Academic Press; 2014.

    Google Scholar 

  25. Philip JR. Plant water relations: some physical aspects. Annu Rev Plant Physiol. 1966;17:245–68.

    Google Scholar 

  26. Asbjornsen H, Goldsmith GR, Alvarado-Barrientos MS, Rebel K, van Osch FP, Rietkerk M, Chen J, Gotsch S, Tobón C, Geissert DR, Gómez-Tagle A, Vache K, Dawson TE. Ecological advances and applications in plant–water relations research: a review. J Plant Ecol. 2011;4:3–22.

    Google Scholar 

  27. Jackson RB, Sperry JS, Dawson TE. Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci. 2000;5:482–8.

    CAS  Google Scholar 

  28. Schwendenmann L, Pendall E, Sanchez-Bragado R, Kunert N, Hölscher D. Tree water uptake in a tropical plantation varying in tree diversity: interspecific differences, seasonal shifts and complementarity. Ecohydrology. 2015;8:1–12.

    Google Scholar 

  29. Dai Y, Zheng X, Tang L, Li Y. Stable oxygen isotopes reveal distinct water use patterns of two Haloxylon species in the Gurbantonggut Desert. Plant Soil. 2015;389:73–87.

    CAS  Google Scholar 

  30. Penna D, Oliviero O, Assendelft R, Zuecco G, van Meerveld HJ, Anfodillo T, Carraro V, Borga M, Dalla FG. Tracing the water sources of trees and streams: isotopic analysis in a small pre-alpine catchment. Proc Environ Sci. 2013;19:106–12.

    CAS  Google Scholar 

  31. White JC, Smith WK. Seasonal variation in water sources of the riparian tree species Acer negundo and Betula nigra, southern Appalachian foothills, USA. Botany. 2015;93:519–28.

    Google Scholar 

  32. Barbeta A, Mejía-Chang M, Ogaya R, Voltas J, Dawson TE, Peñuelas J. The combined effects of a long-term experimental drought and an extreme drought on the use of plantwater sources in a Mediterranean forest. Glob Chang Biol. 2015;21:1213–25.

    Google Scholar 

  33. Sterling TM. Transpiration: water movement through plants. J Nat Resour Life Sci Educ. 2005;34(1):123–123.

    Google Scholar 

  34. Scharwies JD, Dinneny JR. Water transport, perception, and response in plants. J Plant Res. 2019;132(3):311–24.

    CAS  Google Scholar 

  35. Lucas WJ, Groover A, Lichtenberger R, et al. The plant vascular system: evolution, development and functions. J Integr Plant Biol. 2013;55:294–388.

    CAS  Google Scholar 

  36. Khorsand A, Rezaverdinejad V, Asgarzadeh H, Majnooni-Heris A, Rahimi A, Besharat S, Sadraddini AA. Linking plant and soil indices for water stress management in black gram. Sci Rep. 2021;11(1):1–19.

    Google Scholar 

  37. Stewart JI, Cuenca RH, Pruitt WO, Hagan RM, Tosso J. Determination and utilization of water production functions for principal California crops. W-67 CA Contributing Project Report. University of California, Davis, USA; 1977.

    Google Scholar 

  38. Steduto P, Raes D, Hsiao TC, Fereres E, Heng L, Izzi G, Hoogeveen J. AquaCrop: a new model for crop prediction under water deficit conditions. FAO, Rome. 2009;33(80).

    Google Scholar 

  39. Steduto P, Hsiao TC, Fereres E, Raes D. Crop yield response to water. Irrigation and drainage paper no. 66, FAO, Rome; 2012.

    Google Scholar 

  40. Jones HG. Irrigation scheduling: advantages and pitfalls of plant-based methods. J Exp Bot. 2004;55(407):2427–36.

    CAS  Google Scholar 

  41. Sharatt BS, Reicosky DC, Idso SB, Baker DG. Relationships between leaf water potential, canopy temperature, and evapotranspiration in irrigated and nonirrigated alfalfa. Agron J. 1983;75(6):891–4.

    Google Scholar 

  42. Poblete T, Ortega-Farías S, Moreno MA, Bardeen M. Artificial neural network to predict vine water status spatial variability using multi-spectral information obtained from an unmanned aerial vehicle (UAV). Sensors. 2017;17(11):2488.

    Google Scholar 

  43. Maciel DA, Silva VA, Alves HMR, Volpato MML, Barbosa JPRAD, Souza VCOD, Oliveira dos Santos J. Leaf water potential of coffee estimated by landsat-8 images. Plos one. 2020;15(3):e0230013.

    Google Scholar 

  44. Tosin R, Pôças I, Novo H, Teixeira J, Fontes N, Graça A, Cunha M. Assessing predawn leaf water potential based on hyperspectral data and pigment’s concentration of Vitis vinifera L. in the Douro Wine Region. Sci Horticul. 2021;278:109860.

    Google Scholar 

  45. Doorenbos J, Pruitt WO. Guidelines for predicting crop water requirements. FAO irrigation and drainage paper 24, 2nd ed. Rome, Italy; 1977.

    Google Scholar 

  46. Allen RG, Pruitt WO. Rational use of the FAO Blaney-Criddle formula. J Irrig Drain Eng. 1986;112(2):139–55.

    Google Scholar 

  47. Hargreaves GH. Climate and irrigation requirements for Brazil. Logan: Utah State University; 1976. p. 44.

    Google Scholar 

  48. Hargreaves GH, Samani ZA. Estimating potential evapotranspiration. J Irrig Drain Engr ASCE. 1982;108(IR3):223–30.

    Google Scholar 

  49. Makkink GH. Ekzameno de la formula de Penman, Netherlands. J Agric Sci Wageningen. 1957;5:290–305.

    Google Scholar 

  50. Jensen ME, Haise HR. Estimating evapotranspiration from solar radiation. J Irrig Drain Div. 1963;89(4):15–41.

    Google Scholar 

  51. Allen RG, Pereira LS, Raes D, Smith M. Crop evapotranspiration: guidelines for computing crop water requirements. Rome: FAO, 300 p (Irrigation and Drainage Paper, 56); 1998.

    Google Scholar 

  52. Pereira AR, Pruitt WO. Adaptation of the Thornthwaite scheme for estimating daily reference evapotranspiration. Agric Water Manag. 2004;66(3):251–7.

    Google Scholar 

  53. Allen RG, Walter IA, Elliot R, Howell T, Itenfisu D, Jensen M. The ASCE standardized reference evapotranspiration equation, environment and water resources Institute of the Am. Soc. Civil Eng.(ASCE), Task Committee on Standardization of Reference Evapotranspiration, Final Rep., ASCE, Reston, VA, USA; 2005.

    Google Scholar 

  54. Abedinpour M, Sarangi A, Rajput TBS, Singh M, Pathak H, Ahmad T. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agric Water Manag. 2012;110:55–66.

    Google Scholar 

  55. Raes D, Geerts S, Kipkorir E, Wellens J, Sahli A. Simulation of yield decline as a result of water stress with a robust soil water balance model. Agric Water Manag. 2006;81:335–57.

    Google Scholar 

  56. Raes D, Lemmens H, Van Aelst P, Vanden Bulcke M, Smith M. IRSIS—irrigation scheduling information system, vol 1. Manual. K.U.Leuven, Dep. Land Management, Reference Manual 3; 1988.

    Google Scholar 

  57. FAO. Cropwat 8.0 for windows user guide. Rome, Italy; 2009.

    Google Scholar 

  58. Steduto P, Hsiao TC, Raes D, Fereres E. AquaCrop—the FAO crop model to simulate yield response to water: I. concepts and underlying principles. Agron J. 2009;101.

    Google Scholar 

  59. Katerji N, Campi P, Mastrorilli M. Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agr Water Manage. 2013;130(4):14–26.

    Google Scholar 

  60. Anonymous; 2021. https://tagemsuet.tarimorman.gov.tr/pages/login.

  61. Guo D, Zhao R, Xing X, Ma X. Global sensitivity and uncertainty analysis of the AquaCrop model for maize under different irrigation and fertilizer management conditions. Arch Agron Soil Sci. 2020;66(8):1115–33.

    Google Scholar 

  62. Kassie BT, Asseanonyng S, Porter CH, Royce FS. Performance of DSSAT-Nwheat across a wide range of current and future growing conditions. Eur J Agron. 2016;81:27–36.

    Google Scholar 

  63. Ran H, Kang SZ, Hu XT, Li FS, Du TS, Tong L, Li S, Ding RS, Zhou ZJ, Parsons D. Newly developed water productivity and harvest index models for maize in an arid region. Field Crop Res. 2019;234:73–86.

    Google Scholar 

  64. Cai W, Cowan T, Briggs P, Raupach M. Rising temperature depletes soil moisture and exacerbates severe drought conditions across southeast Australia. Geophys Res Lett. 2009;36:L21709.

    Google Scholar 

  65. Keshta N, Elshorbagy A, Carey S. Impacts of climate change on soil moisture and evapotranspiration in reconstructed watersheds in northern Alberta, Canada. Hydrol Process. 2012;26:1321–31.

    Google Scholar 

  66. Carroll DA, Hansen NC, Hopkins BG, DeJonge KC. Leaf temperature of maize and crop water stress index with variable irrigation and nitrogen supply. Irrig Sci. 2017;35(6):549–60.

    Google Scholar 

  67. Hignett and Evett S. Direct and surrogate measures of soil water content. In: Field estimation of soil water content, a practical guide to methods, instrumentation and sensor technology, training course series no. 30, International Atomic Energy Agency, Vienna; 2008.

    Google Scholar 

  68. Evett S. Gravimetric and volumetric direct measurements of soil water content. In: Field estimation of soil water content, a practical guide to methods, instrumentation and sensor technology, training course series no. 30, International Atomic Energy Agency, Vienna; 2008.

    Google Scholar 

  69. Dobriyal P, Qureshi A, Badola R, Hussain SA. A review of the methods available for estimating soil moisture and its implications for water resource management. J Hydrol. 2012;458:110–7.

    Google Scholar 

  70. Birendra K, Chau HW, Mohssen M, Cameron K, Safa M, McIndoe I, Rutter H, Dark A, Lee M, Pandey VP. Assessment of spatial and temporal variability in soil moisture using multi-length TDR probes to calibrate Aquaflex sensors. Irrig Sci. 2021:1–11.

    Google Scholar 

  71. Demir AO, Göksoy AT, Büyükcangaz H, Turan ZM, Köksal ES. Deficit irrigation of sunflower (Helianthus annuus L.) in a sub-humid climate. Irrig Sci. 2006;24(4):279–89.

    Google Scholar 

  72. Aydinsakir K, Dinc N, Buyuktas D, Kocaturk M, Ozkan CF, Karaca C. Water productivity of soybeans under regulated surface and subsurface drip irrigation conditions. Irrig Sci. 2021:1–15.

    Google Scholar 

  73. Wang D, Li G, Mo Y, Zhang D, Xu X, Wilkerson CJ, Hoogenboom G. Evaluation of subsurface, mulched and non-mulched surface drip irrigation for maize production and economic benefits in northeast China. Irrig Sci. 2021;39(2):159–71.

    Google Scholar 

  74. Dane JH, Topp C. Methods of soil analysis. 1st Edn., Soil Science Society of America, Madison, WI, ISBN-10: 089118841X; 2002. p 866.

    Google Scholar 

  75. Sharma PK, Kumar D, Srivastava HS, Patel P. Assessment of different methods for soil moisture estimation: a review. J Remote Sens GIS. 2018;9(1):57–73.

    CAS  Google Scholar 

  76. Evett S. Neutron moisture meters, field estimation of soil water content. In: Field estimation of soil water content, a practical guide to methods, instrumentation and sensor technology, training course series no. 30, International Atomic Energy Agency, Vienna; 2008.

    Google Scholar 

  77. Fityus S, Wells T, Huang W. Water content measurement in expansive soils using the neutron probe. Geotech Test J. 2011;34(3):255–64.

    Google Scholar 

  78. Evett SR, Schwartz RC, Casanova JJ, Heng LK. Soil water sensing for water balance, ET and WUE. Agric Water Manag. 2012;104:1–9.

    Google Scholar 

  79. Barker JB, Heeren DM, Neale CM, Rudnick DR. Evaluation of variable rate irrigation using a remote-sensing-based model. Agric Water Manag. 2018;203:63–74.

    Google Scholar 

  80. Alfonso C, Barbieri P, Hernandez MD, Lewczuk N, Martinez JP, Echarte MM, Echarte L. Water productivity in soybean following a cover crop in a humid environment. Agric Water Manage. 2020;232:106045.

    Google Scholar 

  81. Moldero D, López-Bernal Á, Testi L, Lorite IJ, Fereres E, Orgaz F. Long-term almond yield response to deficit irrigation. Irrig Sci. 2021:1–12.

    Google Scholar 

  82. Evett S, Heng LK. Conventional time domain reflectometry systems. In: Field estimation of soil water content, a practical guide to methods, instrumentation and sensor technology, training course series no. 30, International Atomic Energy Agency, Vienna; 2008.

    Google Scholar 

  83. Topp GC, Davis J, Annan AP. Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour Res. 1980;16(3):574–82.

    Google Scholar 

  84. Amente G, Baker JM, Reece CF. Estimation of soil solution electrical conductivity from bulk soil electrical conductivity in sandy soils. Soil Sci Soc Am J. 2000;64(6):1931–9.

    CAS  Google Scholar 

  85. Yu X, Drnevich VP. Soil water content and dry density by time domain reflectometry. J Geotech Geoenviron Eng. 2004;130(9):922–34.

    Google Scholar 

  86. Evett S, Cepuder P. Capacitance sensors for use in access tubes. In: Field estimation of soil water content, a practical guide to methods, instrumentation and sensor technology, training course series no. 30, International Atomic Energy Agency, Vienna; 2008.

    Google Scholar 

  87. Evett S, Laurent JP. TRIME® FM3 moisture meter and T3 access tube probe. In: Field estimation of soil water content, a practical guide to methods, instrumentation and sensor technology, training course series no. 30, International Atomic Energy Agency, Vienna; 2008.

    Google Scholar 

  88. Shackel KA. plant-based approach to defcit irrigation in trees and vines. HortScience. 2011;46(2):173–7.

    Google Scholar 

  89. Tittebrand A, Spank U, Bernhofer C. Comparison of satellite-and ground-based NDVI above different land-use types. Theoret Appl Climatol. 2009;98(1):171–86.

    Google Scholar 

  90. Pearson RL, Miller LD. Remote spectral measurements as a method for determining plant cover (Doctoral dissertation, Colorado State University. Libraries). 1972.

    Google Scholar 

  91. Rouse JW, Haas RH, Schell JA, Deering DW. Monitoring vegetation systems in the Great Plains with ERTS. In: NASA Goddard Space Flight Center 3d ERTS-1 Symp., vol 1, Sect. A; 1973. pp 309–17.

    Google Scholar 

  92. Huete AR. A soil-adjusted vegetation index (SAVI). Remote Sens Environ. 1988;25(3):295–309.

    Google Scholar 

  93. Tucker CJ. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ. 1979;8(2):127–50.

    Google Scholar 

  94. Liu HQ, Huete AR. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans Geosci Remote Sens. 1995;33:457–65.

    Google Scholar 

  95. Gao BC. NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ. 1996;58:257–66.

    Google Scholar 

  96. Chandrasekar K, Sai MVRS, Roy PS, Dwevedi RS. Land Surface Water Index (LSWI) response to rainfall and NDVI using the MODIS Vegetation Index product. Int J Remote Sens. 2010;31(15):3987–4005.

    Google Scholar 

  97. Marino S, Basso B, Leone A, Alvino A. Agronomic traits and vegetation indices of two onion hybrids. Sci Hortic. 2013;155:56–64.

    Google Scholar 

  98. Alvino A, Marino S. Remote sensing for irrigation of horticultural crops. Horticulturae. 2017;3(2):40.

    Google Scholar 

  99. Zhao H, Xu Z, Zhao J. Development and application of agricultural drought index based on CWSI and drought event rarity. Trans Chin Soc Agric Eng. 2017;33(9):116–25.

    Google Scholar 

  100. Zúñiga CE, Khot LR, Jacoby P, Sankaran S. Remote sensing based water-use efficiency evaluation in sub-surface irrigated wine grape vines. In: Autonomous air and ground sensing systems for agricultural optimization and phenotyping. International Society for Optics and Photonics; 2016. p 98660O.

    Google Scholar 

  101. Neale CM, Bausch WC, Heermann DF. Development of reflectance-based crop coefficients for corn. T Asae. 1990;32(6):1891–900.

    Google Scholar 

  102. Hunsaker DJ, Pinter PJ, Kimball BA. Wheat basal crop coefficients determined by normalized difference vegetation index. Irrig Sci. 2005;24(1):1–14.

    Google Scholar 

  103. Serrano L, González-Flor C, Gorchs G. Assessment of grape yield and composition using the reflectance based Water Index in Mediterranean rainfed vineyards. Remote Sens Environ. 2012;118:249–58.

    Google Scholar 

  104. Er-Raki S, Rodriguez J, Garatuza-Payan J, Watts C, Chehbouni A. Determination of crop evapotranspiration of table grapes in a semi-arid region of Northwest Mexico using multi-spectral vegetation index. Agric Water Manag. 2013;122:12–9.

    Google Scholar 

  105. Consoli S, Vanella D. Comparisons of satellite-based models for estimating evapotranspiration fluxes. J Hydrol. 2014;513:475–89.

    Google Scholar 

  106. Neale C, Ahmed R, Moran M, Pinter P, Qi J, Clarke T. Estimating seasonal cotton evapotranspiration using canopy reflectance. In: International evapotranspiration irrigation scheduling conference; 1996.

    Google Scholar 

  107. Tasumi M, Trezza R, Allen RG, Wright JL. Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid US. Irrig Drain Syst. 2005;19(3–4):355–76.

    Google Scholar 

  108. Bausch WC, Neale CM. Crop coefficients derived from reflected canopy radiation: a concept. T Asae. 1987;30(3):703–0709.

    Google Scholar 

  109. Duchemin B, Hadria R, Erraki S, Boulet G, Maisongrande P, Chehbouni A, Escadafal R, Ezzahar J, Hoedjes J, Kharrou M. Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agric Water Manag. 2006;79(1):1–27.

    Google Scholar 

  110. Mokhtari A, Ahmadi A, Daccache A, Drechsler K. Actual evapotranspiration from UAV images: a multi-sensor data fusion approach. Remote Sens-Basel. 2021;13(12):2315.

    Google Scholar 

  111. Poirier-Pocovi M, Volder A, Bailey BN. Modeling of reference temperatures for calculating crop water stress indices from infrared thermography. Agric Water Manage. 2020;233:106070.

    Google Scholar 

  112. Gutiérrez S, Diago MP, Fernández-Novales J, Tardaguila J. Vineyard water status assessment using on-the-go thermal imaging and machine learning. PLoS One. 2018;13(2):e0192037.

    Google Scholar 

  113. Walker GK, Hatfield JL. test of stress-degree-day concept using multiple planting dates of red kidney beans. Agron J. 1979;71:967–71.

    Google Scholar 

  114. Jackson RD, Pinter PJ Jr, Reginato RJ, Idso SB. Detection and evaluation of plant stress for crop management decisions. IEEE Trans Geosci Remote Sens. 1986;24(1):99–106.

    Google Scholar 

  115. Wiegand CL, Namken LN. Influences of plant moisture stress, solar radiation, and air temperature on cotton leaf temperature. Agron J. 1966;58:582–6.

    Google Scholar 

  116. Blad BL, Rosenberg NJ. Measurement of crop temperature by leaf thermocouple, infrared thermometry and remotely sensed thermal imagery. Agron J. 1975;65:635–41.

    Google Scholar 

  117. Hatfield JL. Measuring plant stress with an infrared thermometer. J Hortic Sci. 1990;25:1535–8.

    Google Scholar 

  118. Irmak S, Haman DZ, Bastug R. Determination of crop water stress index for irrigation timing and yield estimation of corn. Agron J. 2000;92(6):1221–7.

    Google Scholar 

  119. Fucs M, Tanner CB. Infrared thermometry of vegetation. Agron J. 1966;58:597–601.

    Google Scholar 

  120. Ehrler WL. Cotton leaf temperatures as related to soil water depletion and meteorological factors 1. Agron J. 1973;65(3):404–9.

    Google Scholar 

  121. Jackson RD, Idso SB, Reginato RJ. Remote sensing of crop canopy temperatures for scheduling irrigations and estimating yields. In: Proceedings of symposium on remote sensing of natural resources, Utah State University, Logan. UT; 1977.

    Google Scholar 

  122. Idso SB, Jackson RD, Pinter PJ Jr, Reginato RJ, Hatfeld JL. Normalizing the stress-degree-day parameter for environmental variability. Agric Meteorol. 1981;24:45–55.

    Google Scholar 

  123. Moran M, Clarke T, Inoue Y, Vidal A. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens Environ. 1994;49(3):246–63.

    Google Scholar 

  124. Prihodko L, Goward SN. Estimation of air temperature from remotely sensed surface observations. Remote Sens Environ. 1997;60(3):335–46.

    Google Scholar 

  125. Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens Environ. 2002;79(2–3):213–24.

    Google Scholar 

  126. Wang C, Qi S, Niu Z, Wang J. Evaluating soil moisture status in China using the temperature–vegetation dryness index (TVDI). Can J Remote Sens. 2004;30(5):671–9.

    Google Scholar 

  127. Köksal E, İlbeyi A, Üstün H, Özcan H. Yeşil fasulye sulama suyu yönetiminde örtü sıcaklığı ve spektral yansıma oranı değerlerinin kullanım olanakları. Tagem Yayın No: Tagem-Bb-Topraksu-. 2007;29:26.

    Google Scholar 

  128. Köksal ES. Irrigation water management with water deficit index calculated based on oblique viewed surface temperature. Irrig Sci. 2008;2008(27):41–56. https://doi.org/10.1007/s00271-008-0120-5.

    Article  Google Scholar 

  129. Taghvaeian S, Chávez JL, Hansen NC. Infrared thermometry to estimate crop water stress index and water use of irrigated maize in northeastern Colorado. Remote Sens. 2012;4:3619–37.

    Google Scholar 

  130. Taghvaeian S, Chávez JL, Bausch WC, DeJonge KC, Trout TJ. Minimizing instrumentation requirement for estimating crop water stress index and transpiration in maize. Irrig Sci. 2014;32:53–65.

    Google Scholar 

  131. Kullberg EG, DeJonge KC, Chávez JL. Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients. Agric Water Manag. 2017;179:64–73.

    Google Scholar 

  132. Kirnak H, Irik H, Unlukara A. Potential use of crop water stress index (CWSI) in irrigation scheduling of drip-irrigated seed pumpkin plants with different irrigation levels. Sci Horticul. 2019;256:108608.

    Google Scholar 

  133. Son NT, Chen CF, Chen CR, Chang LY, Minh VQ. Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data. Int J Appl Earth Obs Geoinf. 2012;18:417–27.

    Google Scholar 

  134. Zhao T, Stark B, Chen Y, Ray A, Doll D. More reliable crop water stress quantification using small unmanned aerial systems (suas). IFAC-PapersOnLine. 2016;49(16):409–14.

    Google Scholar 

  135. Wu H, Xiong D, Liu B, Zhang S, Yuan Y, Fang Y, … Dahal NM. Spatio-temporal analysis of drought variability using CWSI in the Koshi River Basin (KRB). Int J Environ Res Public Health. 2019;16(17):3100.

    Google Scholar 

  136. Gowda PH, Chavez JL, Colaizzi PD, Evett SR, Howell TA, Tolk JA. ET mapping for agricultural water management: present status and challenges. Irrig Sci. 2008;26(3):223–37.

    Google Scholar 

  137. Ding R, Kang S, Li F, Zhang Y, Tong L, Sun Q. Evaluating eddy covariance method by large-scale weighing lysimeter in a maize field of northwest China. Agric Water Manag. 2010;98(1):87–95.

    Google Scholar 

  138. Foken T, Aubinet M, Leuning R. The eddy covariance method. In: Eddy covariance. Springer; 2012. pp 1–19.

    Google Scholar 

  139. Irmak S, Skaggs KE, Chatterjee S. A review of the Bowen ratio surface energy balance method for quantifying evapotranspiration and other energy fluxes. T Asabe. 2014;57(6):1657–74.

    Google Scholar 

  140. Xue B-L, Wang L, Li X, Yang K, Chen D, Sun L. Evaluation of evapotranspiration estimates for two river basins on the Tibetan Plateau by a water balance method. J Hydrol. 2013;492:290–7.

    Google Scholar 

  141. Alam MS, Lamb DW, Rahman MM. A refined method for rapidly determining the relationship between canopy NDVI and the pasture evapotranspiration coefficient. Comput Electron Agric. 2018;147:12–7.

    Google Scholar 

  142. Genaidy M. Estimating of evapotranspiration using artificial neural network. MISR J Agric Eng. 2020;37(1):81–94.

    Google Scholar 

  143. Kelley J, Pardyjak ER. Using neural networks to estimate site-specific crop evapotranspiration with low-cost sensors. Agronomy. 2019;9(2):108.

    Google Scholar 

  144. Matese A, Toscano P, Di Gennaro SF, Genesio L, Vaccari FP, Primicerio J, Belli C, Zaldei A, Bianconi R, Gioli B. Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sens-Basel. 2015;7(3):2971–90.

    Google Scholar 

  145. Courault D, Seguin B, Olioso A. Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modeling approaches. Irrig Drain Syst. 2005;19(3–4):223–49.

    Google Scholar 

  146. Bastiaanssen WGM, Pelgrum H, Wang J, Ma Y, Moreno JF, Roerink GJ, van der Wal T. A remote sensing surface energy balance algorithm for land (SEBAL) 1.Formulation. J Hydrol. 1998;212–213:213–29.

    Google Scholar 

  147. Monteith JL, Unsworth MH. Principles of environmental physics, 2nd edn; 1990. 291 p.

    Google Scholar 

  148. Hatfield JL, Reginato RJ, Idso SB. Evaluation of canopy temperature-evapotranspiration models over various crops. Agric Forest Meteorol. 1984;32:41–53.

    Google Scholar 

  149. Brown KW, Rosenberg NJ. A resistance model to predict evapotranspiration and its application to a sugar beet field. Agron J. 1973;65(3):341–7.

    Google Scholar 

  150. Jackson RD, Hatield JL, Reginato RJ, Idso SB, Pinter PJ Jr. Estimation of daily evapotranspiration from one time-of-day measurements. Agric Water Manage. 1983;7:51–362.

    Google Scholar 

  151. Bastiaanssen WGM, Pelgrum H, Wang J, Ma Y, Moreno JF, Roerink GJ, van der Wal T. A remote sensing surface energy balance algorithm for land (SEBAL) 2.Validation. J Hydrol. 1998;212–213:213–29.

    Google Scholar 

  152. Allen RG, Tasumi M, Morse A, Trezza R, Wright JL, Bastiaanssen W, Kramber W, Lorite I, Robison CW. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Applications. J Irrig Drain Eng. 2007;133(4):395–406.

    Google Scholar 

  153. Allen RG, Tasumi M, Trezza R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J Irrig Drain Eng. 2007;133(4):380–94.

    Google Scholar 

  154. Su Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol Earth Syst Sc. 2002;6(1):85–100.

    Google Scholar 

  155. Anderson MC, Norman JM, Mecikalski JR, Otkin JA, Kustas WP. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J Geophys Res Atmos. 2007;112(D10).

    Google Scholar 

  156. Norman JM, Kustas WP, Humes KS. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric For Meteorol. 1995;77(3–4):263–93.

    Google Scholar 

  157. Santos C, Lorite I, Tasumi M, Allen R, Fereres E. Integrating satellite-based evapotranspiration with simulation models for irrigation management at the scheme level. Irrig Sci. 2008;26(3):277–88.

    Google Scholar 

  158. Trezza R, Allen RG, Tasumi M. Estimation of actual evapotranspiration along the Middle Rio Grande of New Mexico using MODIS and landsat imagery with the METRIC model. Remote Sens-Basel. 2013;5(10):5397–423.

    Google Scholar 

  159. Elhaddad A, Garcia LA. Using a surface energy balance model (ReSET-Raster) to estimate seasonal crop water use for large agricultural areas: Case study of the Palo Verde irrigation district. J Irrig Drain Eng. 2014;140(10):05014006.

    Google Scholar 

  160. Ortega-Farías S, Ortega-Salazar S, Poblete T, Kilic A, Allen R, Poblete-Echeverría C, Ahumada-Orellana L, Zuñiga M, Sepúlveda D. Estimation of energy balance components over a drip-irrigated olive orchard using thermal and multispectral cameras placed on a helicopter-based unmanned aerial vehicle (UAV). Remote Sens-Basel. 2016;8(8):638.

    Google Scholar 

  161. Hoffmann H, Nieto H, Jensen R, Guzinski R, Zarco-Tejada P, Friborg T. Estimating evapotranspiration with thermal UAV data and two source energy balance models. Hydrol Earth Syst Sci Discus. 2015;12(8).

    Google Scholar 

  162. French AN, Hunsaker DJ, Thorp KR. Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models. Remote Sens Environ. 2015;158:281–94.

    Google Scholar 

  163. Aboutalebi M, Torres-Rua AF, Kustas WP, Nieto H, Coopmans C, McKee M. Assessment of different methods for shadow detection in high-resolution optical imagery and evaluation of shadow impact on calculation of NDVI, and evapotranspiration. Irrig Sci. 2019;37(3):407–29.

    Google Scholar 

  164. Nassar A, Torres-Rua A, Kustas W, Nieto H, McKee M, Hipps L, Stevens D, Alfieri J, Prueger J, Alsina MM. Influence of model grid size on the estimation of surface fluxes using the two source energy balance model and suas imagery in Vineyards. Remote Sens-Basel. 2020;12(3):342.

    Google Scholar 

  165. Nassar A, Torres-Rua A, Kustas W, Alfieri J, Hipps L, Prueger J, Nieto H, Alsina MM, White W, McKee L. Assessing daily evapotranspiration methodologies from one-time-of-day sUAS and EC Information in the GRAPEX project. Remote Sens-Basel. 2021;13(15):2887.

    Google Scholar 

  166. Singh RK, Irmak A. Estimation of crop coefficients using satellite remote sensing. J Irrig Drain Eng. 2009;135(5):597–608.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyüp Selim Köksal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Köksal, E.S., Tunca, E., Taner, S.Ç. (2022). Irrigation Management by Using Digital Technologies. In: Bahadir, M., Haarstrick, A. (eds) Water and Wastewater Management. Water and Wastewater Management. Springer, Cham. https://doi.org/10.1007/978-3-030-95288-4_20

Download citation

Publish with us

Policies and ethics