Skip to main content

Leading to Poncelet: A Story of Collinear Points

  • 86 Accesses

Part of the Annals of the Canadian Society for History and Philosophy of Mathematics/ Société canadienne d’histoire et de philosophie des mathématiques book series (ACSHPM)

Abstract

Even for a highly original work, such as Jean-Victor Poncelet’s Traité des propriétés projectives des figures (1822), previous work prepared the ground. The claim of this paper is that the prevalence of problems and propositions in which collinear points (or concurrent lines) are assumed or demonstrated is a good measure of that groundwork. Euclid, Apollonius, Ptolemy, Pappus, Desargues, Monge, L. Carnot, and C. J. Brianchon all have roles in the story, with special attention to the first decade of the nineteenth century.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-95201-3_3
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-95201-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Archimedes, The Works of Archimedes with the Method of Archimedes, ed T. L. Heath, Cambridge University press, 1912, reissued by New York: Dover, 2002.

    Google Scholar 

  • Bruno Belhoste, De l’École polytechnique à Saratoff, les premiers travaux géométriques de Poncelet, Société des amis de la bibliothéque de l’École Polytechnique (SABIX), www.sabix.org/bulletin/b19/belhoste.html. (original Bulletin No. 19, 1998).

  • Charles-Julien Brianchon, Sur les surfaces courbes du second degré, Journal de l’École Polytechnique Cahier 13, Tome 6, 1806, 297–311.

    Google Scholar 

  • Charles-Julien Brianchon, Solution de plusieurs problémes de géométrie, Journal de l’École polytechnique, Cahier 10, Tome 4, 1810, 1–15.

    Google Scholar 

  • Charles-Julien Brianchon, Géométrie de la règle, Correspondance sur l’École Impériale Polytechnique, No. 5, 2e vol., 1813, 384–387.

    Google Scholar 

  • Lazare Carnot, Géométrie de position, Paris: Duprat, An XI/1803.

    Google Scholar 

  • Lazare Carnot, Essai sur la théorie des transversales, Paris: Courcier, 1806.

    Google Scholar 

  • Giovanni Ceva, De lineis rectis, Milan, 1678.

    Google Scholar 

  • Herbert Oettel, Giovanni Ceva, in New Dictionary of Scientific Biography, Scribner’s Sons, 2008.

    Google Scholar 

  • Michel Chasles, Aperçu historique sur l’origine et developpement des méthodes en géométrie, Brussels, 1837.

    Google Scholar 

  • Girard Desargues, Brouillon project d’une atteinte aux événements des rencontres d’un cône avec un plan, in Field and Gray (1987) (trans Field) and original http://gallica.bnf.fr/ark:/12148/bpt6k105071b/f1.image Paris, 1639.

  • Girard Desargues, Note: - Extrait de la perspective de Bosse 1648, et faisant suite à la perspective de Desargues de 1636, in David Eugene Smith A Source Book in Mathematics, New York: Dover, vol 2, 1959, 307–309.

    Google Scholar 

  • Euclid, Euclid’s Elements, edited and translated by David Joyce, https://mathcs.clarku.edu/~djoyce/java/elements/elements.html, 1998.

  • J. V. Field and J. J. Gray, The Geometrical Work of Girard Desargues, New York: Springer, 1987.

    CrossRef  Google Scholar 

  • Philippe de La Hire, Sectiones Conicae en novem libros distributae, Paris 1685; French translation by Jean Peyroux, Grand Livre des Sections Coniques, Paris: Blanchard, 1995.

    Google Scholar 

  • Gaspard Monge, Géométrie descriptive. Leçons données aux Écoles normals, l’an 3 de la République, Paris: Baudouin, an VII/1799.

    Google Scholar 

  • Pappus of Alexandria, Pappus d’ Alexandrie: La collection mathématique, translated and edited by Paul ver Eecke, Bruges: Desclée de Brouwer, 1933.

    Google Scholar 

  • Blaise Pascal, Essay pour les coniques, 1640, English transl. in Field and Gray (1987), 180–184.

  • Blaise Pascal, Oeuvre de Blaise Pascal, edited by C. Bossut, Paris: La Haye, 1779.

    Google Scholar 

  • J V Poncelet, Applications d’analyse et de géométrie qui ont servi, en 1822, de principal fondement au traité des propriétés projectives des figures, etc., 2 tomes, Paris: Mallet-Bachelier, 1862–64.

    Google Scholar 

  • J V Poncelet, 7 cahiers de 1813–14, in Poncelet (1862/4), Tome 1, 1–441.

  • J. V. Poncelet, Traité des Propriétés Projectives des Figures, Paris: Bachelier 1822.

    Google Scholar 

  • Ptolemy, Ptolemy’s Almagest, edited by G. J. Toomer, New York: Springer-Verlag, 1984.

    Google Scholar 

  • René Taton, L’ “Essay pour les Coniques ” de Pascal, Revue d’histoire des sciences et de leurs applications, tome 8, no.1, 1955, 1–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Baltus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Baltus, C. (2022). Leading to Poncelet: A Story of Collinear Points. In: Zack, M., Schlimm, D. (eds) Research in History and Philosophy of Mathematics. Annals of the Canadian Society for History and Philosophy of Mathematics/ Société canadienne d’histoire et de philosophie des mathématiques. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-95201-3_3

Download citation