Abstract
The concept of risk became ubiquitous with the development of modern sciences and its new perspectives on human agency and the possibilities for knowledge. Today, any damage or losses due to extreme natural events are seen primarily as a product of human action and social dynamics. Congruently, the “Modern Dream” (Zinn, Understanding risk-taking. Palgrave Macmillan, 2020) includes the promise to rely on evidence-based decision-making, which usually means risk quantification and modeling. However, decision-making is generally messier and more complicated in practice. Moreover, quantification presents challenges for risk communication since models, particularly their assumptions and uncertainty, are not always easy to comprehend for the public and policy-makers. In this chapter, we explore these issues by examining the role of quantification and modeling during the ongoing COVID-19 pandemic in Chile. Using the COVID-19 epidemic as a case study, we analyze some of the challenges and limitations of the risk colonization of decision-making during disasters drawing on various data sources. These sources include 26 interviews with scientists who have been part of modeling initiatives, an analysis of the discussions at four COVID-19 modeling webinars, and a collection of various documentary sources (press, official documents, and scientific reports).
Keywords
- Expert knowledge
- Politics
- Risk modeling
- Science communication
- Uncertainty
This is a preview of subscription content, access via your institution.
Buying options
Notes
- 1.
For sociological analysis of this event see Farías, I. (2014). Misrecognizing Tsunamis: Ontological Politics and Cosmopolitical Challenges in Early Warning Systems. The Sociological Review, 62, 61–87, Kane, S., Medina, E. & Michler, D. 2014. Infrastructural Drift in Seismic Cities: Chile, Pacific Rim, 27 February, 2010. Rochester, NY: Social Science Research Network.
- 2.
For example, the Imperial College COVID Response team: https://spiral.imperial.ac.uk:8443/handle/10044/1/78555
- 3.
For example, the Covid Resource Center created by Johns Hopkins University has become broadly used by the press (https://coronavirus.jhu.edu/map.html). Local initiatives, such as ICOVID have also influenced media reports (https://www.icovidchile.cl/).
- 4.
“Greater Santiago” does not fit perfectly into any administrative division. It contains 37 municipalities in four different provinces, and about 7 million people (~40% of the Chilean population).
- 5.
Most experts interviewed for this work agree.
- 6.
The Centers represented in this task force were all from Santiago: the Center of Mathematical Modeling and the Institute of Public Health, University of Chile; the Millennium Institute for Foundational Research on Data, Universidad Católica de Chile; the Institute of Complex Systems, University of Santiago; and the nonprofit organization “Ciencia y Vida.”
- 7.
Brandt (2016) finds something similar in his work about the emerging field of data-science. In this chapter, we refer to them as experts, scientists, or (data)-scientists.
- 8.
For example, https://www.icovidchile.cl/ (P. Universidad Católica de Chile, Universidad de Chile and Universidad de Concepción), http://covid-19vis.cmm.uchile.cl/geo (Center for Mathematical Modelling), and https://coronavirus.mat.uc.cl/ (Data-UC). Repositories: https://github.com/MinCiencia/Datos-COVID19 and https://www.cov2.cl/
References
Arenas, M., Barceló, P., Gutierrez, C., Luna, J. P., Reutter, J., Ugarte, M., et al. (2020). Datos Abiertos para el Combate del Coronavirus. Medium.
Basu, S., & Andrews, J. (2013). Complexity in mathematical models of public health policies: A guide for consumers of models. PLoS Medicine, 10, e1001540.
Bennett, M. (2021). All things equal? Heterogeneity in policy effectiveness against COVID-19 spread in chile. World Development, 137, 105208.
Boholm, M. (2012). The Semantic Distinction Between “Risk” and “Danger”: A Linguistic Analysis. Risk Analysis, 32, 281–293.
Bonnefoy, P. (2013, May 16). Chilean judge upholds manslaughter charges linked to 2010 tsunami. The New York Times. https://www.nytimes.com/2013/05/17/world/americas/chilean-judge-upholds-manslaughter-charges-against-officials-over-tsunami-alert.html
Brainard, J. (2020). Scientists are drowning in COVID-19 papers. Can new tools keep them afloat. Science, 13.
Brandstätter, E., Gigerenzer, G., & Hertwig, R. (2006). The priority heuristic: Making choices without trade-offs. Psychological Review, 113, 409–432.
Brandt, P. (2016). The emergence of the data science profession. Doctoral Dissertation, Columbia University.
Braun, V., Clarke, V., Hayfield, N., & Terry, G. (2019). Thematic analysis. In P. Liamputtong (Ed.), Handbook of research methods in health social sciences. Singapore.
Brown, P. (2020). Studying COVID-19 in light of critical approaches to risk and uncertainty: Research pathways, conceptual tools, and some magic from Mary Douglas. Health, Risk & Society, 22, 1–14.
Catena, P., Latorre, R., & Caro, I. (2020). Adiós de Mañalich consolida peor momento de la crisis sanitaria para Piñera. La Tercera.
Callaghan, S. 2020. COVID-19 Is a Data Science Issue. Patterns (New York, N.y.), 1, 100022.
Cooperativa. (2020). Ex ministro Mañalich enfrentó segunda jornada de interrogatorio [Online]. Santiago, Chile. Retrieved November 2020, from https://bit.ly/36Ls5Ug
CREDEN. (2016). Estrategia Nacional de I+D+i Para La Resiliencia Ante Desastres de Origen Natural [Online]. Santiago, Chile: Comisión Nacional para la Resiliencia frente a Desastres de Origen Natural, CREDEN. http://www.cnid.cl/wp-content/uploads/2016/12/CREDEN-27122016-2.pdf
de la Llera, J. C., Rivera, F., Gil, M., & Swarzhaupt, U. (2018). Gran Laboratorio de Resiliencia Frente a Desastres de Origen Natural. Ediciones Universidad Católica.
Dean, M. (1998). Risk, Calculable and Incalculable. Soziale Welt, 49, 25–42.
El Mercurio. (2020, September 22). Pandemia: expertos en salud descartan delitos en gestión de Mañalich, pero advierten falencias y errores “graves”. El Mercurio.
Elliott, A. (2002). Beck’s sociology of risk: A critical assessment. Sociology, 36, 293–315.
Funk, S., Bansal, S., Bauch, C. T., Eames, K. T. D., Edmunds, W. J., Galvani, A. P., & Klepac, P. (2015). Nine challenges in incorporating the dynamics of behaviour in infectious diseases models. Epidemics, 10, 21–25.
Gallardo, R. (2020a, May 26). Mañalich: “Todos los ejercicios epidemiológicos, las fórmulas de proyección con las que yo me seduje en enero, se han derrumbado como castillo de naipes”. La Tercera.
Gallardo, R. (2020b, May 1). Subsecretaria de Ciencias defiende al gobierno tras quiebre de Mesa de Datos Covid-19: “Tal vez hoy no es el momento para exigir ese tipo de información”. La Tercera.
Gil, M., & Rivera, F. (2022). Strengthening the Role of Science in Disaster Risk Reduction: The Chilean Strategy. Disasters, https://doi.org/10.1111/disa.12533
Gil, M., & Undurraga, E. A. (2020). COVID-19 has exposed how ‘The Other Half’ (Still) Lives. Bulletin of Latin American Research, 39, 28–34.
Gómez, M. (2020, June 13). La partida de Jaime Mañalich. PAUTA.
Gonzalez, R., & Kiwi, M. (2020, April 16). COVID-19: Chile no está aplanando la curva, la perdimos de vista. CIPER.
Hall, J. L., & Battaglio, R. P. (2020). Remember the foundation, keep the faith, find what works, and focus on the future. Public Administration Review, 80, 345–348.
Heyman, B. (2010). The concept of risk. In B. Heyman, A. Alaszewski, M. Shaw, & M. Titterton (Eds.), Risk, safety and clinical practice: Health care through the lens of risk. Oxford University Press.
Holmdahl, I., & Buckee, C. (2020). Wrong but useful—what covid-19 epidemiologic models can and cannot tell us. New England Journal of Medicine, 383, 303–305.
Infobae. (2020). La Universidad de Oxford no confía en los datos de COVID-19 que informa el Gobierno argentino [Online]. Infobae. Retrieved October 2020, from https://bit.ly/36Nl7Oz
Kelman, I. (2018). Lost for words amongst disaster risk science vocabulary? International Journal of Disaster Risk Science, 9, 281–291.
Kreps, S. E., & Kriner, D. L. (2020). Model uncertainty, political contestation, and public trust in science: Evidence from the COVID-19 pandemic. Science. Advances, 6, eabd4563.
Latif, S., Usman, M., Manzoor, S., Iqbal, W., Qadir, J., Tyson, G., Castro, I., Razi, A., Kamel, M. N., Boulos, A. W., & Crowcroft, J. (2020). Leveraging data science to combat COVID-19: A comprehensive review. IEEE Transactions on Artificial Intelligence, 1, 85–103.
Latorre, R. (2020, August 29). Arturo Zúñiga, subsecretario de Redes Asistenciales: “Hubo quienes querían que falláramos en esta pandemia”. La Tercera.
Li, Y., Undurraga, E. A., & Zubizarreta, J. R. (2022). Effectiveness of Localized Lockdowns in the Covid-19 Pandemic. American Journal of Epidemiology 2022. https://doi.org/10.1093/aje/kwac008.
Luhmann, N. (1993). Risk: A sociological theory. de Gruyter.
Maybank, A. (2020, April 7). The pandemic’s missing data. New York Times.
Mcgowan, C. (2020, April 10). Chile doctors fear complacency over Covid-19 after initial successes. The Guardian.
Mena, G. E., Martinez, P. P., Mahmud A. S., & Marquet, P. A. (2021). Buckee CO, Santillana M. Socioeconomic status determines COVID-19 incidence and related mortality in Santiago, Chile. Science, 372(6545), eabg5298. https://doi.org/10.1101/2021.01.12.21249682.
Metcalf, C. J. E., Edmunds, W. J., & Lessler, J. (2015). Six challenges in modelling for public health policy. Epidemics, 10, 93–96.
Minay, S., & Muñoz, A. (2020). A la Mesa de Datos del Ministerio de Ciencia le faltan… datos. La Tercera PM.
MINISTERIO DE CIENCIA, T., CONOCIMIENTO, E INNOVACIÓN. (2020a). Base de datos CoVID-19 [Online]. Santiago de Chile: Ministerio de Ciencia, Tecnología, Conocimiento, e Innovación. Retrieved September 2020, from http://www.minciencia.gob.cl/covid19
MINISTERIO DE CIENCIA, T., CONOCIMIENTO, E INNOVACIÓN. (2020b). Informe N1. Submesa de Datos COVID-19. Santiago, RM: Ministerio de Ciencia, Tecnología, Conocimiento e Innovación.
MINISTERIO DE SALUD. (2020a). Cifras Oficiales COVID-19 [Online]. Santiago: Ministry of Health, Plan de Acción Coronavirus COVID-19. Retrieved October 30, 2020, from https://www.gob.cl/coronavirus/cifrasoficiales/
MINISTERIO DE SALUD. (2020b). Plan de acción por coronavirus [Online]. Santiago: Ministerio de Salud, Gobierno de Chile. Retrieved October 10, 2020, from https://www.gob.cl/coronavirus/plandeaccion/
Miranda, B., & Albert, C. (2020, July 27). Dato clave para desconfinamiento: gobierno no explica cómo calcula fuerte repunte en trazabilidad de Covid. CIPER.
Moradian, N., Ochs, H. D., Sedikies, C., Hamblin, M. R., Camargo, C. A., Martinez, J. A., et al. (2020). The urgent need for integrated science to fight COVID-19 pandemic and beyond. Journal of Translational Medicine, 18, 205.
O’Neill, P. D., & Roberts, G. O. (1999). Bayesian inference for partially observed stochastic epidemics. Journal of the Royal Statistical Society: Series A (Statistics in Society), 162, 121–129.
OCDE. (2019). Chile: Hacia un Futuro Mas Sano. Estudios de la OCDE sobre Salud Pública.
Onemi. (2016). Politica Nacional para la Gestión de Riesgo de Desastres. Santiago de Chile: Oficina Nacional de Emergencias (Chile).
Panchadsaram, R. (2020). Covid-19 data is a public good. The US government must start treating it like one. MIT Technology Review. Cambridge MA.
Prensa Presidencia. (2020). Presidente Piñera presenta Plan Retorno Seguro: “Hoy es tiempo de poner a Chile por delante” [Online]. Santiago de Chile: Gobierno de Chile. Retrieved June 10, 2020, from https://prensa.presidencia.cl/comunicado.aspx?id=150453.
Roser, M., Ritchie, H., Ortiz-ospina, E., & Hasell, J. (2020). Coronavirus pandemic (COVID-19) [Online]. Retrieved June 1, 2020, from https://bit.ly/2ROHdts
Saltelli, A., Bammer, G., Bruno, I., Charters, E., Di Fiore, M., Didier, E., et al. (2020). Five ways to ensure that models serve society: A manifesto. Nature, 582, 482–484.
Schmidt, C. (2004). The analysis of semi-structured interviews. In A companion to qualitative research. Sage Publications.
Sepúlveda, N. (2020, June 13). Minsal reporta a la OMS una cifra de fallecidos más alta que la informada a diario en Chile. CIPER.
Shea, K., Runge, M. C., Pannell, D., Probert, W. J. M., Li, S.-L., Tildesley, M., & Ferrari, M. (2020). Harnessing multiple models for outbreak management. Science, 368, 577–579.
SOCIEDAD CHILENA DE MEDICINA INTENSIVA SOCHIMI. (2020). Encuesta nacional sobre ocupación de unidades críticas durante contingencia CoVID-19 [Online]. Santiago, Chile: Universidad Finis Terrae. Retrieved May 22, 2020, from https://medicina-intensiva.cl/site/covid/img/noticias/informe_22MY2020.pdf
Szmukler, G. (2003). Risk assessment: ‘numbers’ and ‘values’. Psychiatric Bulletin, 27, 205–207.
Tariq, A., Undurraga, E. A., Laborde, C. C., Vogt-geisse, K., Luo, R., Rothenberg, R., & Chowell, G. (2020). Transmission dynamics and control of COVID-19 in Chile, March-October, 2020. PLoS Neglected Tropical Diseases, 15, e0009070.
The Economist. (2020). Why relations between economists and epidemiologists have been testy. Too often, economists are reluctant collaborators.
Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211, 453–458.
Undurraga, E. A., Chowell, G., & Mizumoto, K. (2021). COVID-19 case fatality risk by age and gender in a high testing setting in Latin America: Chile, March–August 2020. Infectious Diseases of Poverty, 10, 11.
UNISDR. (2015). Sendai framework for disaster risk reduction (2015–2030). Switzerland: United Nations International Strategy for Disaster Reduction.
UNISDR. (2017). Terminology on disaster risk reduction. Geneva: United Nations International Strategy for Disaster Reduction. https://www.undrr.org/terminology/disaster-risk
Verelst, F., Willem, L., & Beutels, P. (2016). Behavioural change models for infectious disease transmission: A systematic review (2010–2015). Journal of The Royal Society Interface, 13, 20160820.
Weber, M. (1958). From Max Weber: Essays in sociology. In From Max Weber: Essays in sociology. Oxford University Press.
White, H. C. (2008). Identity and control: How social formations emerge. Princeton.
Yearley, S. (2005). Making sense of science: Understanding the social study of science. SAGE Publications Ltd..
Zehr, S. C. (2000). Public representations of scientific uncertainty about global climate change. Public Understanding of Science, 9, 85–103.
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., et al. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. The Lancet, 395, 1054–1062.
Zinn, J. O. (2010). Risk as Discourse: Interdisciplinary Perspectives. Critical Approaches to Discourse Analysis across Disciplines (CADAAD), 4, 106–124.
Zinn, J. O. (2020). Understanding risk-taking. Palgrave Macmillan.
Zinn, J. O. (2006). Recent developments in sociology of risk and uncertainty. Historical Social Research/Historische Sozialforschung, 31, 275–286.
Acknowledgments
The authors wish to thank the 26 (data)-scientists that agreed to be a part of this project. We also thank Diego Cárcamo for his valuable help in developing this chapter. This work was partially funded by the Socioeconomic Transformations Observatories [ANID/PCI/MAX PLANCK INSTITUTE FOR THE STUDY OF SOCIETIES/MPG190012], the Research Center for Integrated Disaster Risk Management (CIGIDEN), [ANID/FONDAP/15110017], and the ANID Millennium Science Initiative Program [Grant NCN17_081 and NCS17_062]. The study sponsors had no role in the study design, collection, analysis, and interpretation of data; in the writing of the chapter; and in the decision to submit for publication.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Gil, M., Undurraga, E.A. (2022). Living the Modern Dream: Risk Quantification and Modeling During the Covid-19 Pandemic in Chile. In: Brown, P.R., Zinn, J.O. (eds) Covid-19 and the Sociology of Risk and Uncertainty . Critical Studies in Risk and Uncertainty. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-95167-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-95167-2_9
Published:
Publisher Name: Palgrave Macmillan, Cham
Print ISBN: 978-3-030-95166-5
Online ISBN: 978-3-030-95167-2
eBook Packages: Social SciencesSocial Sciences (R0)