Skip to main content

Living the Modern Dream: Risk Quantification and Modeling During the Covid-19 Pandemic in Chile

  • Chapter
  • First Online:
Covid-19 and the Sociology of Risk and Uncertainty

Part of the book series: Critical Studies in Risk and Uncertainty ((CRSTRU))

Abstract

The concept of risk became ubiquitous with the development of modern sciences and its new perspectives on human agency and the possibilities for knowledge. Today, any damage or losses due to extreme natural events are seen primarily as a product of human action and social dynamics. Congruently, the “Modern Dream” (Zinn, Understanding risk-taking. Palgrave Macmillan, 2020) includes the promise to rely on evidence-based decision-making, which usually means risk quantification and modeling. However, decision-making is generally messier and more complicated in practice. Moreover, quantification presents challenges for risk communication since models, particularly their assumptions and uncertainty, are not always easy to comprehend for the public and policy-makers. In this chapter, we explore these issues by examining the role of quantification and modeling during the ongoing COVID-19 pandemic in Chile. Using the COVID-19 epidemic as a case study, we analyze some of the challenges and limitations of the risk colonization of decision-making during disasters drawing on various data sources. These sources include 26 interviews with scientists who have been part of modeling initiatives, an analysis of the discussions at four COVID-19 modeling webinars, and a collection of various documentary sources (press, official documents, and scientific reports).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For sociological analysis of this event see Farías, I. (2014). Misrecognizing Tsunamis: Ontological Politics and Cosmopolitical Challenges in Early Warning Systems. The Sociological Review, 62, 61–87, Kane, S., Medina, E. & Michler, D. 2014. Infrastructural Drift in Seismic Cities: Chile, Pacific Rim, 27 February, 2010. Rochester, NY: Social Science Research Network.

  2. 2.

    For example, the Imperial College COVID Response team: https://spiral.imperial.ac.uk:8443/handle/10044/1/78555

  3. 3.

    For example, the Covid Resource Center created by Johns Hopkins University has become broadly used by the press (https://coronavirus.jhu.edu/map.html). Local initiatives, such as ICOVID have also influenced media reports (https://www.icovidchile.cl/).

  4. 4.

    “Greater Santiago” does not fit perfectly into any administrative division. It contains 37 municipalities in four different provinces, and about 7 million people (~40% of the Chilean population).

  5. 5.

    Most experts interviewed for this work agree.

  6. 6.

    The Centers represented in this task force were all from Santiago: the Center of Mathematical Modeling and the Institute of Public Health, University of Chile; the Millennium Institute for Foundational Research on Data, Universidad Católica de Chile; the Institute of Complex Systems, University of Santiago; and the nonprofit organization “Ciencia y Vida.”

  7. 7.

    Brandt (2016) finds something similar in his work about the emerging field of data-science. In this chapter, we refer to them as experts, scientists, or (data)-scientists.

  8. 8.

    For example, https://www.icovidchile.cl/ (P. Universidad Católica de Chile, Universidad de Chile and Universidad de Concepción), http://covid-19vis.cmm.uchile.cl/geo (Center for Mathematical Modelling), and https://coronavirus.mat.uc.cl/ (Data-UC). Repositories: https://github.com/MinCiencia/Datos-COVID19 and https://www.cov2.cl/

References

  • Arenas, M., Barceló, P., Gutierrez, C., Luna, J. P., Reutter, J., Ugarte, M., et al. (2020). Datos Abiertos para el Combate del Coronavirus. Medium.

    Google Scholar 

  • Basu, S., & Andrews, J. (2013). Complexity in mathematical models of public health policies: A guide for consumers of models. PLoS Medicine, 10, e1001540.

    Article  Google Scholar 

  • Bennett, M. (2021). All things equal? Heterogeneity in policy effectiveness against COVID-19 spread in chile. World Development, 137, 105208.

    Article  Google Scholar 

  • Boholm, M. (2012). The Semantic Distinction Between “Risk” and “Danger”: A Linguistic Analysis. Risk Analysis, 32, 281–293.

    Google Scholar 

  • Bonnefoy, P. (2013, May 16). Chilean judge upholds manslaughter charges linked to 2010 tsunami. The New York Times. https://www.nytimes.com/2013/05/17/world/americas/chilean-judge-upholds-manslaughter-charges-against-officials-over-tsunami-alert.html

  • Brainard, J. (2020). Scientists are drowning in COVID-19 papers. Can new tools keep them afloat. Science, 13.

    Google Scholar 

  • Brandstätter, E., Gigerenzer, G., & Hertwig, R. (2006). The priority heuristic: Making choices without trade-offs. Psychological Review, 113, 409–432.

    Article  Google Scholar 

  • Brandt, P. (2016). The emergence of the data science profession. Doctoral Dissertation, Columbia University.

    Google Scholar 

  • Braun, V., Clarke, V., Hayfield, N., & Terry, G. (2019). Thematic analysis. In P. Liamputtong (Ed.), Handbook of research methods in health social sciences. Singapore.

    Google Scholar 

  • Brown, P. (2020). Studying COVID-19 in light of critical approaches to risk and uncertainty: Research pathways, conceptual tools, and some magic from Mary Douglas. Health, Risk & Society, 22, 1–14.

    Article  Google Scholar 

  • Catena, P., Latorre, R., & Caro, I. (2020). Adiós de Mañalich consolida peor momento de la crisis sanitaria para Piñera. La Tercera.

    Google Scholar 

  • Callaghan, S. 2020. COVID-19 Is a Data Science Issue. Patterns (New York, N.y.), 1, 100022.

    Google Scholar 

  • Cooperativa. (2020). Ex ministro Mañalich enfrentó segunda jornada de interrogatorio [Online]. Santiago, Chile. Retrieved November 2020, from https://bit.ly/36Ls5Ug

  • CREDEN. (2016). Estrategia Nacional de I+D+i Para La Resiliencia Ante Desastres de Origen Natural [Online]. Santiago, Chile: Comisión Nacional para la Resiliencia frente a Desastres de Origen Natural, CREDEN. http://www.cnid.cl/wp-content/uploads/2016/12/CREDEN-27122016-2.pdf

  • de la Llera, J. C., Rivera, F., Gil, M., & Swarzhaupt, U. (2018). Gran Laboratorio de Resiliencia Frente a Desastres de Origen Natural. Ediciones Universidad Católica.

    Google Scholar 

  • Dean, M. (1998). Risk, Calculable and Incalculable. Soziale Welt, 49, 25–42.

    Google Scholar 

  • El Mercurio. (2020, September 22). Pandemia: expertos en salud descartan delitos en gestión de Mañalich, pero advierten falencias y errores “graves”. El Mercurio.

    Google Scholar 

  • Elliott, A. (2002). Beck’s sociology of risk: A critical assessment. Sociology, 36, 293–315.

    Article  Google Scholar 

  • Funk, S., Bansal, S., Bauch, C. T., Eames, K. T. D., Edmunds, W. J., Galvani, A. P., & Klepac, P. (2015). Nine challenges in incorporating the dynamics of behaviour in infectious diseases models. Epidemics, 10, 21–25.

    Article  Google Scholar 

  • Gallardo, R. (2020a, May 26). Mañalich: “Todos los ejercicios epidemiológicos, las fórmulas de proyección con las que yo me seduje en enero, se han derrumbado como castillo de naipes”. La Tercera.

    Google Scholar 

  • Gallardo, R. (2020b, May 1). Subsecretaria de Ciencias defiende al gobierno tras quiebre de Mesa de Datos Covid-19: “Tal vez hoy no es el momento para exigir ese tipo de información”. La Tercera.

    Google Scholar 

  • Gil, M., & Rivera, F. (2022). Strengthening the Role of Science in Disaster Risk Reduction: The Chilean Strategy. Disasters, https://doi.org/10.1111/disa.12533

  • Gil, M., & Undurraga, E. A. (2020). COVID-19 has exposed how ‘The Other Half’ (Still) Lives. Bulletin of Latin American Research, 39, 28–34.

    Google Scholar 

  • Gómez, M. (2020, June 13). La partida de Jaime Mañalich. PAUTA.

    Google Scholar 

  • Gonzalez, R., & Kiwi, M. (2020, April 16). COVID-19: Chile no está aplanando la curva, la perdimos de vista. CIPER.

    Google Scholar 

  • Hall, J. L., & Battaglio, R. P. (2020). Remember the foundation, keep the faith, find what works, and focus on the future. Public Administration Review, 80, 345–348.

    Article  Google Scholar 

  • Heyman, B. (2010). The concept of risk. In B. Heyman, A. Alaszewski, M. Shaw, & M. Titterton (Eds.), Risk, safety and clinical practice: Health care through the lens of risk. Oxford University Press.

    Google Scholar 

  • Holmdahl, I., & Buckee, C. (2020). Wrong but useful—what covid-19 epidemiologic models can and cannot tell us. New England Journal of Medicine, 383, 303–305.

    Article  Google Scholar 

  • Infobae. (2020). La Universidad de Oxford no confía en los datos de COVID-19 que informa el Gobierno argentino [Online]. Infobae. Retrieved October 2020, from https://bit.ly/36Nl7Oz

  • Kelman, I. (2018). Lost for words amongst disaster risk science vocabulary? International Journal of Disaster Risk Science, 9, 281–291.

    Article  Google Scholar 

  • Kreps, S. E., & Kriner, D. L. (2020). Model uncertainty, political contestation, and public trust in science: Evidence from the COVID-19 pandemic. Science. Advances, 6, eabd4563.

    Google Scholar 

  • Latif, S., Usman, M., Manzoor, S., Iqbal, W., Qadir, J., Tyson, G., Castro, I., Razi, A., Kamel, M. N., Boulos, A. W., & Crowcroft, J. (2020). Leveraging data science to combat COVID-19: A comprehensive review. IEEE Transactions on Artificial Intelligence, 1, 85–103.

    Article  Google Scholar 

  • Latorre, R. (2020, August 29). Arturo Zúñiga, subsecretario de Redes Asistenciales: “Hubo quienes querían que falláramos en esta pandemia”. La Tercera.

    Google Scholar 

  • Li, Y., Undurraga, E. A., & Zubizarreta, J. R. (2022). Effectiveness of Localized Lockdowns in the Covid-19 Pandemic. American Journal of Epidemiology 2022. https://doi.org/10.1093/aje/kwac008.

  • Luhmann, N. (1993). Risk: A sociological theory. de Gruyter.

    Google Scholar 

  • Maybank, A. (2020, April 7). The pandemic’s missing data. New York Times.

    Google Scholar 

  • Mcgowan, C. (2020, April 10). Chile doctors fear complacency over Covid-19 after initial successes. The Guardian.

    Google Scholar 

  • Mena, G. E., Martinez, P. P., Mahmud A. S., & Marquet, P. A. (2021). Buckee CO, Santillana M. Socioeconomic status determines COVID-19 incidence and related mortality in Santiago, Chile. Science, 372(6545), eabg5298. https://doi.org/10.1101/2021.01.12.21249682.

  • Metcalf, C. J. E., Edmunds, W. J., & Lessler, J. (2015). Six challenges in modelling for public health policy. Epidemics, 10, 93–96.

    Article  Google Scholar 

  • Minay, S., & Muñoz, A. (2020). A la Mesa de Datos del Ministerio de Ciencia le faltan… datos. La Tercera PM.

    Google Scholar 

  • MINISTERIO DE CIENCIA, T., CONOCIMIENTO, E INNOVACIÓN. (2020a). Base de datos CoVID-19 [Online]. Santiago de Chile: Ministerio de Ciencia, Tecnología, Conocimiento, e Innovación. Retrieved September 2020, from http://www.minciencia.gob.cl/covid19

  • MINISTERIO DE CIENCIA, T., CONOCIMIENTO, E INNOVACIÓN. (2020b). Informe N1. Submesa de Datos COVID-19. Santiago, RM: Ministerio de Ciencia, Tecnología, Conocimiento e Innovación.

    Google Scholar 

  • MINISTERIO DE SALUD. (2020a). Cifras Oficiales COVID-19 [Online]. Santiago: Ministry of Health, Plan de Acción Coronavirus COVID-19. Retrieved October 30, 2020, from https://www.gob.cl/coronavirus/cifrasoficiales/

  • MINISTERIO DE SALUD. (2020b). Plan de acción por coronavirus [Online]. Santiago: Ministerio de Salud, Gobierno de Chile. Retrieved October 10, 2020, from https://www.gob.cl/coronavirus/plandeaccion/

  • Miranda, B., & Albert, C. (2020, July 27). Dato clave para desconfinamiento: gobierno no explica cómo calcula fuerte repunte en trazabilidad de Covid. CIPER.

    Google Scholar 

  • Moradian, N., Ochs, H. D., Sedikies, C., Hamblin, M. R., Camargo, C. A., Martinez, J. A., et al. (2020). The urgent need for integrated science to fight COVID-19 pandemic and beyond. Journal of Translational Medicine, 18, 205.

    Article  Google Scholar 

  • O’Neill, P. D., & Roberts, G. O. (1999). Bayesian inference for partially observed stochastic epidemics. Journal of the Royal Statistical Society: Series A (Statistics in Society), 162, 121–129.

    Article  Google Scholar 

  • OCDE. (2019). Chile: Hacia un Futuro Mas Sano. Estudios de la OCDE sobre Salud Pública.

    Google Scholar 

  • Onemi. (2016). Politica Nacional para la Gestión de Riesgo de Desastres. Santiago de Chile: Oficina Nacional de Emergencias (Chile).

    Google Scholar 

  • Panchadsaram, R. (2020). Covid-19 data is a public good. The US government must start treating it like one. MIT Technology Review. Cambridge MA.

    Google Scholar 

  • Prensa Presidencia. (2020). Presidente Piñera presenta Plan Retorno Seguro: “Hoy es tiempo de poner a Chile por delante” [Online]. Santiago de Chile: Gobierno de Chile. Retrieved June 10, 2020, from https://prensa.presidencia.cl/comunicado.aspx?id=150453.

  • Roser, M., Ritchie, H., Ortiz-ospina, E., & Hasell, J. (2020). Coronavirus pandemic (COVID-19) [Online]. Retrieved June 1, 2020, from https://bit.ly/2ROHdts

  • Saltelli, A., Bammer, G., Bruno, I., Charters, E., Di Fiore, M., Didier, E., et al. (2020). Five ways to ensure that models serve society: A manifesto. Nature, 582, 482–484.

    Article  Google Scholar 

  • Schmidt, C. (2004). The analysis of semi-structured interviews. In A companion to qualitative research. Sage Publications.

    Google Scholar 

  • Sepúlveda, N. (2020, June 13). Minsal reporta a la OMS una cifra de fallecidos más alta que la informada a diario en Chile. CIPER.

    Google Scholar 

  • Shea, K., Runge, M. C., Pannell, D., Probert, W. J. M., Li, S.-L., Tildesley, M., & Ferrari, M. (2020). Harnessing multiple models for outbreak management. Science, 368, 577–579.

    Article  Google Scholar 

  • SOCIEDAD CHILENA DE MEDICINA INTENSIVA SOCHIMI. (2020). Encuesta nacional sobre ocupación de unidades críticas durante contingencia CoVID-19 [Online]. Santiago, Chile: Universidad Finis Terrae. Retrieved May 22, 2020, from https://medicina-intensiva.cl/site/covid/img/noticias/informe_22MY2020.pdf

  • Szmukler, G. (2003). Risk assessment: ‘numbers’ and ‘values’. Psychiatric Bulletin, 27, 205–207.

    Article  Google Scholar 

  • Tariq, A., Undurraga, E. A., Laborde, C. C., Vogt-geisse, K., Luo, R., Rothenberg, R., & Chowell, G. (2020). Transmission dynamics and control of COVID-19 in Chile, March-October, 2020. PLoS Neglected Tropical Diseases, 15, e0009070.

    Article  Google Scholar 

  • The Economist. (2020). Why relations between economists and epidemiologists have been testy. Too often, economists are reluctant collaborators.

    Google Scholar 

  • Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211, 453–458.

    Article  Google Scholar 

  • Undurraga, E. A., Chowell, G., & Mizumoto, K. (2021). COVID-19 case fatality risk by age and gender in a high testing setting in Latin America: Chile, March–August 2020. Infectious Diseases of Poverty, 10, 11.

    Article  Google Scholar 

  • UNISDR. (2015). Sendai framework for disaster risk reduction (2015–2030). Switzerland: United Nations International Strategy for Disaster Reduction.

    Google Scholar 

  • UNISDR. (2017). Terminology on disaster risk reduction. Geneva: United Nations International Strategy for Disaster Reduction. https://www.undrr.org/terminology/disaster-risk

  • Verelst, F., Willem, L., & Beutels, P. (2016). Behavioural change models for infectious disease transmission: A systematic review (2010–2015). Journal of The Royal Society Interface, 13, 20160820.

    Article  Google Scholar 

  • Weber, M. (1958). From Max Weber: Essays in sociology. In From Max Weber: Essays in sociology. Oxford University Press.

    Google Scholar 

  • White, H. C. (2008). Identity and control: How social formations emerge. Princeton.

    Google Scholar 

  • Yearley, S. (2005). Making sense of science: Understanding the social study of science. SAGE Publications Ltd..

    Book  Google Scholar 

  • Zehr, S. C. (2000). Public representations of scientific uncertainty about global climate change. Public Understanding of Science, 9, 85–103.

    Article  Google Scholar 

  • Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., et al. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. The Lancet, 395, 1054–1062.

    Article  Google Scholar 

  • Zinn, J. O. (2010). Risk as Discourse: Interdisciplinary Perspectives. Critical Approaches to Discourse Analysis across Disciplines (CADAAD), 4, 106–124.

    Google Scholar 

  • Zinn, J. O. (2020). Understanding risk-taking. Palgrave Macmillan.

    Book  Google Scholar 

  • Zinn, J. O. (2006). Recent developments in sociology of risk and uncertainty. Historical Social Research/Historische Sozialforschung, 31, 275–286.

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the 26 (data)-scientists that agreed to be a part of this project. We also thank Diego Cárcamo for his valuable help in developing this chapter. This work was partially funded by the Socioeconomic Transformations Observatories [ANID/PCI/MAX PLANCK INSTITUTE FOR THE STUDY OF SOCIETIES/MPG190012], the Research Center for Integrated Disaster Risk Management (CIGIDEN), [ANID/FONDAP/15110017], and the ANID Millennium Science Initiative Program [Grant NCN17_081 and NCS17_062]. The study sponsors had no role in the study design, collection, analysis, and interpretation of data; in the writing of the chapter; and in the decision to submit for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Gil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gil, M., Undurraga, E.A. (2022). Living the Modern Dream: Risk Quantification and Modeling During the Covid-19 Pandemic in Chile. In: Brown, P.R., Zinn, J.O. (eds) Covid-19 and the Sociology of Risk and Uncertainty . Critical Studies in Risk and Uncertainty. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-95167-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95167-2_9

  • Published:

  • Publisher Name: Palgrave Macmillan, Cham

  • Print ISBN: 978-3-030-95166-5

  • Online ISBN: 978-3-030-95167-2

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics