Skip to main content

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 257 Accesses

Abstract

Engineering applications of nanofluids in boiling and evaporating systems include thermal management systems, boiler, quenching, heat pumps, etc. Boiling, condensation, and evaporation are quite popular passive or active thermal management techniques in different applications. Boiling and evaporation of nanofluids occur in evaporator section of heat pipes and thermosiphons. Nanofluids have proved to be effective coolants in quenching processes where film and nucleate boiling regimes set on the surface of the workpieces and in nuclear engineering where different boiling regimes emerge in the channels of boilers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rashidi S, Mahian O, Languri EM (2018) Applications of nanofluids in condensing and evaporating systems: a review. J Therm Anal Calorimetry 131(3):2027–2039

    Article  Google Scholar 

  2. Dey D, Sahu DS (2021) Nanofluid in the multiphase flow field and heat transfer: a review. Heat Transfer 50(4):3722–3775

    Article  Google Scholar 

  3. Sözen A, Gürü M, Khanlari A, Çiftçi E (2019) Experimental and numerical study on enhancement of heat transfer characteristics of a heat pipe utilizing aqueous clinoptilolite nanofluid. Appl Therm Eng 160:114001

    Google Scholar 

  4. Kim H, DeWitt G, McKrell T, Buongiorno J, Hu LW (2009) On the quenching of steel and zircaloy spheres in water-based nanofluids with aluminia, silica and diamond nanoparticles. Int J Multiphase Flow 35:427–438

    Article  Google Scholar 

  5. Bang IC, Buongiorno J, Yu LW, Wang H (2008) Measurement of key pool boiling parameters in nanofluids for nuclear applications. J Power Energy Syst 2:340–351

    Article  Google Scholar 

  6. Çengel YA (2002) Heat transfer: a practical approach, 2nd edn. McGraw-Hill Education

    Google Scholar 

  7. Bergman Th L, Incropera FP, DeWitt DP, Lavine AS (2011) Fundamentals of heat and mass transfer, 7th edn. Wiley, p 1039

    Google Scholar 

  8. Lienhard J IV, Lienhard JV (2017) a heat transfer, 4th edn., p 757

    Google Scholar 

  9. Fang X, Chen Y, Zhang H, Chen W, Dong A, Wang R (2016) Heat transfer and critical heat flux of nanofluid boiling: a comprehensive review. Renew Sustain Energy Rev 62:924–940

    Article  Google Scholar 

  10. Ciloglu D, Bolukbasi A (2015) A comprehensive review on pool boiling of nanofluids. Appl Therm Eng 84:45–63

    Article  Google Scholar 

  11. Rohsenow WM (1952) A method of correlating heat transfer data for surface boiling liquids. Trans ASME 74:969–979

    Google Scholar 

  12. Ramesh G, Prabhu NK (2011) Review of thermo-phisical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment. Nanoscale Res Lett 334:1–15

    Google Scholar 

  13. Wang XQ, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46:1–19

    Article  Google Scholar 

  14. Bang IS, Chang SH (2005) Boiling heat transfer performance and phenomena of Al2O3–water nanofluids from a plain surface in a pool. Int J Heat Mass Transf 48:2420–2428

    Article  Google Scholar 

  15. Kamatchi R, Venkatachalapathy S (2015) Parametric study of pool boiling heat transfer with nanofluids for the enhancement of critical heat flux: a review. Int J Therm Sci 87:228–240

    Article  Google Scholar 

  16. Li X, Yuan Y, Tu J (2015) A theoretical model for nucleate boiling of nanofluids considering the nanoparticle Brownian motion in liquid microlayer. Int J Heat Mass Transf 91:467–476

    Article  Google Scholar 

  17. Li K, Li XD, Tu JY, Wang HG (2015) A mathematic model considering the effect of Brownian motion for subcooled nucleate pool boiling of dilute nanofluids Int. J Heat Mass Transf 84:46–53

    Article  Google Scholar 

  18. Hassan H, Harmand S (2013) 3D transient model of vapour chamber: Effect of nanofluids on its performance. Appl Therm Eng 51:1191–1201

    Article  Google Scholar 

  19. Bromley LA (1950) Heat transfer in stable film boiling. Chem Eng Prog 46:211–227

    Google Scholar 

  20. Ellion ME (1954) A study of the mechanism of boiling heat transfer. Jet Prob Lab Memo, CIT 20:1–88

    Google Scholar 

  21. Koh JCY (1962) Analysis of film boiling on vertical surfaces. Trans ASME J Heat Transfer 55–62

    Google Scholar 

  22. Avramenko AA, Shevchuk IV, Tyrinov AI, Blinov DG (2015) Heat transfer in stable film boiling of a nanofluid over a vertical surface. Int J Therm Sci 92:106–118

    Article  Google Scholar 

  23. Avramenko AA, Blinov DG, Shevchuk IV (2011) Self-similar analysis of fluid flow and heat-mass transfer of nanofluids in boundary layer. Phys Fluids 23:082002

    Google Scholar 

  24. Buongiorno J (2006) Convective transport in nanofluids. Trans ASME J Heat Transfer 128:240–250

    Article  Google Scholar 

  25. Avramenko AA, Shevchuk IV, Tyrinov AI, Blinov DG (2014) Heat transfer at film condensation of stationary vapor with nanoparticles near a vertical plate. Appl Therm Eng 73(1):389–396

    Article  Google Scholar 

  26. Avramenko AA, Shevchuk IV, Tyrinov AI, Blinov DG (2015) Heat transfer at film condensation of moving vapor with nanoparticles over a flat surface. Int J Heat Mass Transfer 82:316–324

    Article  Google Scholar 

  27. Avramenko AA, Shevchuk IV, Abdallah S, Blinov DG, Harmand S, Tyrinov AI (2016) Symmetry analysis for film boiling of nanofluids on a vertical plate using a nonlinear approach. J. Mol Liquids 223:156–164

    Article  Google Scholar 

  28. Malvandi A (2016) Film boiling of magnetic nanofluids (MNFs) over a vertical plate in presence of a uniform variable-directional magnetic field. J Magnetism Magnetic Mater 406:95–102

    Article  Google Scholar 

  29. Malvandi A, Heysiattalab S, Ghasemi A, Ganji DD, Pop I (2017) Nanoparticle migration effects at film boiling of nanofluids over a vertical plate. Int J Numer Meth Heat Fluid Flow 27(2):471–485

    Google Scholar 

  30. Malvandi A (2016) Anisotropic behavior of magnetic nanofluids (MNFs) at film boiling over a vertical cylinder in presence of a uniform variable-directional magnetic field. Powder Technol 294:307–314

    Article  Google Scholar 

  31. Malvandi A, Heysiattalab S, Ganji DD (2016) Thermophoresis and Brownian motion effects on heat transfer enhancement at film boiling of nanofluids over a vertical cylinder. J Mol Liquids 216:503–509

    Article  Google Scholar 

  32. Jehhef KA, Aun SHA, Siba MAAA (2020) Theoretical study of the film boiling heat transfer of different nanofluids on the vertical heated surface. IOP Conf Ser Mater Sci Eng 745(1):012061

    Google Scholar 

  33. Najim M, Feddaoui M, Nait Alla A, Charef A (2019) Computational study of evaporating nanofluids film along a vertical channel by the two-phase model. Int J Mech Sci 151:858–867

    Article  Google Scholar 

  34. Yang XF, Liu ZH (2011) Pool boiling heat transfer of functionalized nanofluid under sub-atmospheric pressures. Int J Therm Sci 50:2402–2412

    Article  Google Scholar 

  35. Nusselt W (1916) Die Oberflächenkondensation des Wasserdampfes. Z. Vereines Deutsch. Ing. 60:541–546, 569–575

    Google Scholar 

  36. Olver P (1986) Applications of Lie groups to differential equations. Springer, New York

    Book  Google Scholar 

  37. Oberlack M (2000) Asymptotic expansion, symmetry groups, and invariant solutions of laminar and turbulent wall-bounded flows. ZAMM 80:791–800

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy A. Avramenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Avramenko, A.A., Shevchuk, I.V. (2022). Analytical Modeling and Symmetry Analysis of Stable Film Boiling in Nanofluids. In: Modelling of Convective Heat and Mass Transfer in Nanofluids with and without Boiling and Condensation. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-95081-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95081-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95080-4

  • Online ISBN: 978-3-030-95081-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics