Skip to main content

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 250 Accesses

Abstract

Self-similar solutions provide researchers with a convenient and practical tool for studying fluid flows and convective heat and mass transfer. This is possible in cases where the geometry under study is regular, for example, near a flat wall, in rectangular geometries, in channels with a circular cross-section, etc. The transition from partial differential equations to ordinary differential equations by an order of magnitude simplifies the mathematical problem statement, increases the speed of calculations, and in some cases enables finding analytical solutions to physical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olver P (1986) Applications of Lie groups to differential equations. Springer, New York

    Book  Google Scholar 

  2. Schlichting H, Gersten K (2000) Boundary layer theory, 8th edn. Springer, Berlin

    Book  Google Scholar 

  3. Avramenko AA, Kobzar SG, Shevchuk IV, Kuznetsov AV, Iwanisov LT (2001) Symmetry of turbulent boundary-layer flows: investigation of different eddy viscosity models. Acta Mech 151(1–2):1–14

    Article  Google Scholar 

  4. Nold A, Oberlack M (2013) Symmetry analysis in linear hydrodynamic stability theory: classical and new modes in linear shear. Phys Fluids 25:104101

    Google Scholar 

  5. Avramenko AA, Blinov DG, Shevchuk IV (2011) Self-similar analysis of fluid flow and heat-mass transfer of nanofluids in boundary layer. Phys Fluids 23:082002

    Google Scholar 

  6. Avramenko AA, Blinov DG, Shevchuk IV, and Kuznetsov AV (2012) Symmetry analysis and self-similar forms of fluid flow and heat-mass transfer in turbulent boundary layer flow of a nanofluid. Phys Fluids 24:092003

    Google Scholar 

  7. Avramenko AA, Shevchuk IV, Abdallah S, Blinov DG, and Tyrinov AI (2017) Self-similar analysis of fluid flow, heat, and mass transfer at orthogonal nanofluid impingement onto a flat surface. Phys. Fluids 29:052005

    Google Scholar 

  8. Avramenko AA, Shevchuk IV (2019) Lie group analysis and general forms of self-similar parabolic equations for fluid flow, heat and mass transfer of nanofluids. J Therm Anal Calorimetry 135(1):223–235

    Article  Google Scholar 

  9. Buongiorno J (2006) Convective transport in nanofluids. Trans ASME. J Heat Transfer 128:240–250

    Article  Google Scholar 

  10. Mehmood A, Usman M (2018) Heat transfer enhancement in rotating disk boundary layer. Therm Sci 22(6):2467–2487

    Article  Google Scholar 

  11. Shevchuk IV (2009) Convective heat and mass transfer in rotating disk systems. Springer, Berlin

    Book  Google Scholar 

  12. Mehmood A, Usman M (2018) Controlling boundary layer separation in stretching sheet flow. Alex Eng J 57:3747–3753

    Article  Google Scholar 

  13. Mehmood A, Usman M (2016) Non-uniform nanoparticle concentration effects on moving plate boundary layer. Can J Phys 94(11):1222–1227

    Article  Google Scholar 

  14. Serna J (2016) Heat and mass transfer mechanisms in nanofluids boundary layers. Int J Heat Mass Transfer 92:173–183

    Article  Google Scholar 

  15. Khan MI, Khan MWA, Alsaedi A, Hayat T, Khan MI (2020) Entropy generation optimization in flow of non-Newtonian nanomaterial with binary chemical reaction and Arrhenius activation energy. Physica A 538:122806

    Google Scholar 

  16. Khan WA, Aziz A, Uddin N (2013) Buongiorno model for nanofluid Blasius flow with surface heat and mass fluxes. J Thermophys Heat Transfer 27(1):134–141

    Article  Google Scholar 

  17. Chandra RN (2020) Magnetohydrodynamic natural convection flow of a nanofluid due to sinusoidal surface temperature variations. Phys. Fluids 32(2):022003

    Google Scholar 

  18. LinY ZL, Zhang X (2014) Radiation effects on Marangoni convection flow and heat transfer in pseudo-plastic non-Newtonian nanofluids with variable thermal conductivity. Int J Heat Mass Transfer 77:708–716

    Article  Google Scholar 

  19. Kuznetsov AV, Nield DA (2013) The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: a revised model. Int J Heat Mass Transfer 65:682–685

    Article  Google Scholar 

  20. Kuznetsov AV, Nield DA (2014) Natural convective boundary-layer flow of a nanofluid past a vertical plate: a revised model. Int J Therm Sci 77:126–129

    Article  Google Scholar 

  21. İlhan B, Ertürk H (2017) Experimental characterization of laminar forced convection of hBN-water nanofluid in circular pipe. Int J Heat Mass Transfer 111:500–507

    Article  Google Scholar 

  22. Afshoon Y, Fakhar A (2014) Numerical study of improvement in heat transfer coefficient of Cu-O water nanofluid in the shell and tube heat exchangers. Biosci Biotechnol Res Asia 11(2):739–747

    Article  Google Scholar 

  23. Mahdavi M., Sharifpur M, Meyer JP, Chen L (2020) Thermal analysis of a nanofluid free jet impingement on a rotating disk using volume of fluid in combination with discrete modeling. Int J Therm Sci 158:106532

    Google Scholar 

  24. Selimefendigil F, Öztop HF (2018) Cooling of a partially elastic isothermal surface by nanofluids jet impingement. Trans ASME J Heat Transfer 140(4):042205

    Google Scholar 

  25. Alhamaly AS, Khan M, Shuja SZ, Yilbas BS, Al-Qahtani H (2021) Axisymmetric stagnation point flow on linearly stretching surfaces and heat transfer: nanofluid with variable physical properties. Case Stud Therm Eng 24:100839

    Google Scholar 

  26. Makinde OD, Khan WA, and Khan ZH (2013) Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Int J Heat Mass Transfer 62:526–533 (2013)

    Google Scholar 

  27. Temah MA, Dawood MMK, Shehata A (2016) Numerical and experimental investigation of flow structure and behaviour of nanofluids flow impingement on horizontal flat plate. Exp Therm Fluid Sci 74:235–246

    Article  Google Scholar 

  28. Zeitoun O, Ali M (212) Nanofluid impingement get heat transfer. Nanoscale Res Lett 7:139–147

    Google Scholar 

  29. Batchelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83:97–117

    Article  MathSciNet  Google Scholar 

  30. Kole M, Dey TK (2010) Viscosity of alumina nanoparticles dispersed in car engine coolant. Exp Thermal Fluid Sci 34:677–683

    Article  Google Scholar 

  31. Pohl S, Feja S, Buschmann MH (2011) Thermal conductivity and heat transfer of ceramic nanofluids show classical behavior. In: Proceedings of the conference thermal and materials nanoscience and nanotechnology, Antalya, Turkey, pp 1–8

    Google Scholar 

  32. Buongiorno J (2005) A non-homogeneous equilibrium model for convective transport in flowing nanofluids. In: Proceedings ASME 2005 Summer Heat Transfer Conference, vol 2. Paper no HT2005–72072, San-Francisco, CA, pp 599–607

    Google Scholar 

  33. Lienhard IV, Lienhard JH (2003) A heat transfer textbook, 3rd edn. Phlogiston Press, Cambridge

    MATH  Google Scholar 

  34. Oberlack M (2000) Asymptotic expansion, symmetry groups, and invariant solutions of laminar and turbulent wall-bounded flows. ZAMM 80(791)

    Google Scholar 

  35. Avramenko AA (2000) Self-similar analysis of turbulent hydrodynamic and temperature boundary layers. High Temp 38(3):428–433

    Article  Google Scholar 

  36. Falkner VM (1943) A new law for calculating drag: the resistance of a smooth flat plate with turbulent boundary layer. Aircr Eng Aerosp Technol 15(3):65–69

    Article  Google Scholar 

  37. Ho CJ, Chen NW, Li ZW (2008) Numerical simulation of natural convection of nanofluidin a square enclosure: effects due to uncertainties of viscosity and thermal conductivity. Int J Heat Mass Transfer 51:4506–4516

    Article  Google Scholar 

  38. Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Hu L, Alvarado JL, Bang IC, Bishnoi SW, Bonetti M, Botz F, Cecere A, Chang Y, Chen G, Chen H, Chung SJ, Chyu MK, Das SK, Di P, Ding R, Dubois Y, Dzido F, Eapen G, Escher J, Funfschilling W, Galand D, Gao Q, Gharagozloo J, Goodson PE, Gutierrez KE, Hong JG, Horton H, Hwang M, Iorio KS, Jang CS, Jarzebski SP, Jiang AB, Jin Y, Kabelac L, Kamath S, Kedzierski A, Kieng MA, Kim LG, Kim C, Kim J, Lee S, Leong SH, Manna KC, Michel I, Ni B, Patel R, Philip HE, Poulikakos J, Reynaud D, Savino C, Singh R, Song PK, Sundararajan P, Timofeeva T, Tritcak E, Turanov T, Van Vaerenbergh AN, Wen S, Witharana D, Yang S, Yeh C, Zhao W, Zhou X (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106:094312

    Google Scholar 

  39. Wenhua Y, France DM, Routbort JL, Choi SUS (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Eng 29(5):432–460

    Article  Google Scholar 

  40. Wen D, and DingY (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transfer 47:5181–5188

    Google Scholar 

  41. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experim Heat Transfer 11:151–170

    Article  Google Scholar 

  42. Hiemenz K (1911) Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Thesis Gottingen. Dingl. Polytech. J.: 326

    Google Scholar 

  43. Shevchuk IV, Saniei N, Yan XT (2003) Impingement heat transfer over a rotating disk: integral method. AIAA J Thermophys Heat Transfer 17(2):291–293

    Article  Google Scholar 

  44. Shevchuk IV (2009) An integral method for turbulent heat and mass transfer over a rotating disk for the Prandtl and Schmidt numbers much larger than unity. Heat Mass Transfer 45(10):1313–1321

    Article  Google Scholar 

  45. Goldstein S (1950) Modern developments in fluid dynamics, vol I and II. Oxford Clarendon Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy A. Avramenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Avramenko, A.A., Shevchuk, I.V. (2022). Symmetry Analysis of Boundary Layer Flows (Parabolic Flows) of Nanofluids. In: Modelling of Convective Heat and Mass Transfer in Nanofluids with and without Boiling and Condensation. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-95081-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95081-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95080-4

  • Online ISBN: 978-3-030-95081-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics