Skip to main content

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 273 Accesses

Abstract

The intensity of convective heat transfer between a solid surface and a single-phase Newtonian fluid is determined by the thermophysical properties of the fluid, the fluid flow rate, and the geometry of the object.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buschmann MH, Azizian R, Kempe T, Juliá JE, Martínez-Cuenca R, Sundén B, Wu Z, Seppälä A, Ala-Nissila T (2018) Correct interpretation of nanofluid convective heat transfer. Int J Thermal Sci 129:504–531

    Article  Google Scholar 

  2. Maxwell JC (1904) Treatise on electricity and magnetism. Oxford University Press, London

    MATH  Google Scholar 

  3. Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45:855–863

    Article  Google Scholar 

  4. Yu W, France DM, Routbort JL, Choi SUS (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng 29(5):432–460

    Article  Google Scholar 

  5. Brinkman HC (1952) The viscosity of concentrated suspensions and solution. J Chem Phys 20:571–581

    Article  Google Scholar 

  6. Maiga SEB, Palm SM, Nguyen CT, Roy G, Galanis N (2005) Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow 26:530–546

    Article  Google Scholar 

  7. Abu-Nada E, Masoud Z, Oztop HF, Campo A (2010) Effect of nanofluid variable properties on natural convection in enclosures. Int J Therm Sci 49:479–491

    Article  Google Scholar 

  8. Ho CJ, Chen MW, Li ZW (2008) Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity. Int J Heat Mass Transf 51:4506–4516

    Article  Google Scholar 

  9. Ghasemi B, Aminossadati SM (2010) Periodic natural convection in a nanofluid-filled enclosure with oscillating heat flux. Int J Therm Sci 49:1–9

    Article  Google Scholar 

  10. Ogut EB (2009) Natural convection of water-based nanofluids in an inclined enclosure with a heat source. Int J Therm Sci 48:2063–2073

    Article  Google Scholar 

  11. Thang BH, Khoi PH, Minh PN (2015) A modified model for thermal conductivity of carbon nanotube-nanofluids. Phys Fluids 27:032002

    Google Scholar 

  12. Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Hu L, Alvarado JL, Bang IC, Bishnoi SW, Bonetti M, Botz F, Cecere A, Chang Y, Chen G, Chen H, Chung SJ, Chyu MK, Das SK, Di Paola R, Ding Y, Dubois F, Dzido G, Eapen J, Escher W, Funfschilling D, Galand Q, Gao J, Gharagozloo PE, Goodson KE, Gutierrez JG, Hong H, Horton M, Hwang KS, Iorio CS, Jang SP, Jarzebski AB, Jiang Y, Jin L, Kabelac S, Kamath A, Kedzierski MA, Kieng LG, Kim J, Kim S, Kim SH, Lee KC, Leong I, Manna B, Michel R, Ni H, Patel E, Philip J, Poulikakos D, Reynaud CC, Savino R, Singh PK, Song P, Sundararajan T, Timofeeva E, Tritcak T, Turanov AN, Van Vaerenbergh S, Wen D, Witharana S, Yang C, Yeh W, Zhao X & Zhou S (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106:094312

    Google Scholar 

  13. Sharifpur M, Ntumba T, Meyer JP (2012) Parametric analysis of effective thermal conductivity models for nanofluids. ASME IMECE 2012–85093:1–11

    Google Scholar 

  14. Kumar PM, Kumar J, Tamilarasan R, Sendhilnathan S, Suresh S (2015) Review on nanofluids theoretical thermal conductivity models. Eng J 19(1):67–83

    Article  Google Scholar 

  15. Aybar HŞ, Sharifpur M, Azizian MR, Mehrabi M, Meyer JP (2015) A Review of Thermal Conductivity Models for Nanofluids. Heat Transfer Eng 36(13):1085–1110

    Article  Google Scholar 

  16. Batchelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83:97–117

    Article  MathSciNet  Google Scholar 

  17. Wen D, Ding Y (2005) Effect of particle migration on heat transfer in suspensions of nanoparticles flowing through minichannels. Microfluid Nanofluid 1:183–189

    Article  Google Scholar 

  18. Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transfer 46(19):3639–3653

    Article  Google Scholar 

  19. Brereton GJ (2014) Accuracy in numerical solution of the particle concentration field in laminar wall-bounded flows with thermophoresis and diffusion. Aerosol Sci Technol 48(9):957–968

    Article  Google Scholar 

  20. Buongiorno J (2006) Convective transport in nanofluids. Trans ASME J Heat Transfer 128:240–250

    Article  Google Scholar 

  21. Avramenko AA, Blinov DG, and Shevchuk IV (2011) Self-similar analysis of fluid flow and heat-mass transfer of nanofluids in boundary layer. Phys Fluids 23:082002

    Google Scholar 

  22. Avramenko AA, Blinov DG, Shevchuk IV, and Kuznetsov AV (2012) Symmetry analysis and self-similar forms of fluid flow and heat-mass transfer in turbulent boundary layer flow of a nanofluid. Phys Fluids 24:092003

    Google Scholar 

  23. Avramenko AA, Shevchuk IV, Abdallah S, Blinov DG, Tyrinov AI (2017) Self-similar analysis of fluid flow, heat, and mass transfer at orthogonal nanofluid impingement onto a flat surface. Phys Fluids 29:052005

    Google Scholar 

  24. Avramenko AA, Shevchuk IV (2019) Lie group analysis and general forms of self-similar parabolic equations for fluid flow, heat and mass transfer of nanofluids. J Thermal Anal Calorimetry 135(1):223–235

    Article  Google Scholar 

  25. Kuznetsov AV, Nield DA (2010) Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Therm Sci 49:243–247

    Article  Google Scholar 

  26. Schlichting H, Gersten K (2000) Boundary layer theory, 8th edn. Springer, Berlin

    Book  Google Scholar 

  27. Loitsyanskii LG (1966) Mechanics of liquids and gases. Pergamon, Oxford

    MATH  Google Scholar 

  28. Lienhard IV, Lienhard JH (2003) A heat transfer textbook, 3rd edn. Phlogiston Press, Cambridge

    MATH  Google Scholar 

  29. Baehr HD, Stephan K (2006) Heat and mass transfer, 2nd, revised edn. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy A. Avramenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Avramenko, A.A., Shevchuk, I.V. (2022). Physical Foundations and Mathematical Models of Transport Processes in Nanofluids. In: Modelling of Convective Heat and Mass Transfer in Nanofluids with and without Boiling and Condensation. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-95081-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95081-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95080-4

  • Online ISBN: 978-3-030-95081-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics