Skip to main content

Neuropathogenesis and Neurological Manifestations of SARS-CoV-2

  • Chapter
  • First Online:
COVID-19 Critical and Intensive Care Medicine Essentials

Abstract

Neurological complications of COVID-19 contribute significantly to mortality in the intensive care unit (ICU). Preventive therapy, though discussed in literature, is limited for COVID-19 neurological manifestations and treatment algorithms continue to rely on evidence from previous pandemics. Thus, in this chapter we evaluate current in vitro, in vitro, histopathological studies to ascertain the most likely mechanisms of SARS-CoV-2 central nervous system entry. From this understanding, we determine probable mechanisms for neurological compilations observed in COVID-19 as relevant to the clinician. SARS-CoV-2 infection of nasal epithelium and the respiratory tract may allow for a systemic inflammatory response that results in neuroinflammation. While most neurological complications are inflammatory in etiology, rarely, SARS-CoV-2 may enter into the central nervous system and mediate neuronal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE-2:

Angiotensin converting enzyme-2 cellular receptor

BBB:

Blood–brain-barrier

B-CSF-B:

Blood–cerebrospinal fluid-barrier

COVID-19:

Coronavirus Disease 2019

CSF:

Cerebrospinal fluid

CNS:

Central nervous system

ICH:

Intracranial hemorrhage

MRI:

Magnetic resonance imaging

OSNs:

Olfactory sense neurons

OE:

Olfactory epithelium

SARS-CoV-2:

Severe acute respiratory syndrome Coronavirus 2

TMPRSS-2:

Transmembrane protease, serine 2

References

  1. Hoffmann M, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Netland J, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zubair AS, et al. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019. JAMA Neurol. 2020;77(8):1018.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bilinska K, et al. Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: identification of cell types and trends with age. ACS Chem Nerosci. 2020;11(11):1555–62.

    Article  CAS  Google Scholar 

  5. Brann DH, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv. 2020;6(31):eabc5801.

    Article  CAS  PubMed  Google Scholar 

  6. Qiu C, et al. Olfactory and gustatory dysfunction as an early identifier of COVID-19 in adults and children: an international multicenter study. Otolaryngol Head Neck Surg. 2020;163(4):714–21.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen M, et al. Elevated ACE-2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. Eur Respir J. 2020;56(3):2001948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Klingenstein M, et al. Evidence of SARS-CoV2 entry protein ACE2 in the human nose and olfactory bulb. Cells Tissues Organs. 2021;209(4–6):155–64.

    Google Scholar 

  9. Ziegler CGK, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lechien JR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020;277(8):2251–61.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Touisserkani SK, Ayatollahi A. Oral corticosteroid relieves post-COVID-19 anosmia in a 35-year-old patient. Case Rep Otolaryngol. 2020;2020:5892047.

    PubMed  PubMed Central  Google Scholar 

  12. Vaira LA, et al. Anosmia and Ageusia: common findings in COVID-19 patients. Laryngoscope. 2020;130(7):1787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heydel J-M, et al. Odorant-binding proteins and xenobiotic metabolizing enzymes: implications in olfactory perireceptor events. Anat Rec. 2013;296(9):1333–45.

    Article  CAS  Google Scholar 

  14. Ye Q, et al. SARS-CoV-2 infection causes transient olfactory dysfunction in mice. Cold Spring Harbor: Cold Spring Harbor Laboratory; 2020.

    Book  Google Scholar 

  15. Abdelalim AA, et al. Corticosteroid nasal spray for recovery of smell sensation in COVID-19 patients: a randomized controlled trial. Am J Otolaryngol. 2021;42(2):102884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schwob JE. Neural regeneration and the peripheral olfactory system. Anat Rec. 2002;269(1):33–49.

    Article  PubMed  Google Scholar 

  17. Meinhardt J, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci. 2021;24(2):168–75.

    Article  CAS  PubMed  Google Scholar 

  18. Tsivgoulis G, et al. Olfactory bulb and mucosa abnormalities in persistent COVID-19-induced anosmia: a magnetic resonance imaging study. Eur J Neurol. 2021;28(1):e6.

    Article  CAS  PubMed  Google Scholar 

  19. Yao L, et al. Olfactory cortex and olfactory bulb volume alterations in patients with post-infectious olfactory loss. Brain Imaging Behav. 2018;12(5):1355–62.

    Article  PubMed  Google Scholar 

  20. da Silva Júnior PR, et al. Anosmia and COVID-19: perspectives on its association and the pathophysiological mechanisms involved. Egypt J Neurol Psychiatry Neurosurg. 2021;57(1):8.

    Article  Google Scholar 

  21. Pajo AT, et al. Neuropathologic findings of patients with COVID-19: a systematic review. Neurol Sci. 2021;42(4):1255–66.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen W, et al. Detectable 2019-nCoV viral RNA in blood is a strong indicator for the further clinical severity. Emerg Microbes Infect. 2020;9(1):469–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang C, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England). 2020;395(10223):497–506.

    Article  CAS  Google Scholar 

  24. Wang W, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020;323(18):1843–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang W, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. 2020;9(1):386–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berger I, Schaffitzel C. The SARS-CoV-2 spike protein: balancing stability and infectivity. Cell Res. 2020;30(12):1059–60.

    Article  CAS  PubMed  Google Scholar 

  27. Cai Y, et al. Distinct conformational states of SARS-CoV-2 spike protein. Science. 2020;369(6511):1586–92.

    Article  CAS  PubMed  Google Scholar 

  28. Rhea EM, et al. The S1 protein of SARS-CoV-2 crosses the blood–brain barrier in mice. Nat Neurosci. 2021;24(3):368–78.

    Article  CAS  PubMed  Google Scholar 

  29. Buzhdygan TP, et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood–brain barrier. Neurobiol Dis. 2020;146:105131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pellegrini L, et al. SARS-CoV-2 infects the brain choroid plexus and disrupts the blood–CSF barrier in human brain organoids. Cell Stem Cell. 2020;27(6):951–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jacob F, et al. Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-CoV-2 neurotropism predominates in choroid plexus epithelium. Cell Stem Cell. 2020;27(6):937–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lewis A, et al. Cerebrospinal fluid in COVID-19: a systematic review of the literature. J Neurol Sci. 2021;421:117316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bellon M, et al. Cerebrospinal fluid features in SARS-CoV-2 RT-PCR positive patients. Clin Infect Dis. 2020;73(9):e3102–5.

    Article  CAS  Google Scholar 

  34. Destras G, et al. Systematic SARS-CoV-2 screening in cerebrospinal fluid during the COVID-19 pandemic. Lancet Microbe. 2020;1(4):e149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. de Espíndola OM, et al. Patients with COVID-19 and neurological manifestations show undetectable SARS-CoV-2 RNA levels in the cerebrospinal fluid. Int J Infect Dis. 2020;96:567–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Franke C, et al. High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms. Brain Behav Immun. 2020;93:415–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Neumann B, et al. Cerebrospinal fluid findings in COVID-19 patients with neurological symptoms. J Neurol Sci. 2020;418:117090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ellul MA, et al. Neurological associations of COVID-19. Lancet Neurol. 2020;19(9):767–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Meier IB, et al. Neurological and mental health consequences of COVID-19: potential implications for well-being and labour force. Brain Commun. 2021;3(1):fcab012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Helms J, et al. Delirium and encephalopathy in severe COVID-19: a cohort analysis of ICU patients. Crit Care. 2020;24(1):1.

    Article  Google Scholar 

  41. Mao L, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683.

    Article  PubMed  Google Scholar 

  42. Merkler AE, et al. Risk of ischemic stroke in patients with coronavirus disease 2019 (COVID-19) vs patients with influenza. JAMA Neurol. 2020;77(11):1366–72.

    Article  Google Scholar 

  43. Fanning JP, Barnett A, Premraj L, Whitman G, Arora R, Battaglini D, Huth S, Porto DB, Choi H, Suen J, Bassi GL, Fraser MG. Stroke complicating critically-ill patients with SARS-CoV-2: analysis of the COVID-19 Critical Care Consortium (CCCC) International, Multicentre Observational Study. Minneapolis, MN: American Academy of Neurology; 2021.

    Google Scholar 

  44. Garcia MA, et al. Cerebrospinal fluid in COVID-19 neurological complications: no cytokine storm or neuroinflammation. Cold Spring Harbor: Cold Spring Harbor Laboratory; 2021.

    Google Scholar 

  45. Iadecola C, Anrather J, Kamel H. Effects of COVID-19 on the nervous system. Cell. 2020;183(1):16–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kumar A, et al. SARS-CoV-2 cell entry receptor ACE2 mediated endothelial dysfunction leads to vascular thrombosis in COVID-19 patients. Med Hypotheses. 2020;145:110320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nugent MA, et al. Perlecan is required to inhibit thrombosis after deep vascular injury and contributes to endothelial cell-mediated inhibition of intimal hyperplasia. Proc Natl Acad Sci U S A. 2000;97(12):6722–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gupta A, et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020;26(7):1017–32.

    Article  CAS  PubMed  Google Scholar 

  49. Lawton MT, et al. Coronavirus disease 2019 (COVID-19) can predispose young to intracerebral hemorrhage: a retrospective observational study. BMC Neurol. 2021;21(1):83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Muhammad S, et al. Letter to editor: severe brain haemorrhage and concomitant COVID-19 infection: a neurovascular complication of COVID-19. Brain Behav Immun. 2020;87:150–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mishra S, et al. Intracranial hemorrhage in COVID-19 patients. J Stroke Cerebrovasc Dis. 2021;30(4):105603.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Thu SS, Matin N, Levine SR. Olfactory gyrus intracerebral hemorrhage in a patient with COVID-19 infection. J Clin Neurosci. 2020;79:275–6.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cheruiyot I, et al. Intracranial hemorrhage in coronavirus disease 2019 (COVID-19) patients. Neurol Sci. 2021;42(1):25–33.

    Article  PubMed  Google Scholar 

  54. Zahid MJ, et al. Hemorrhagic stroke in setting of severe COVID-19 infection requiring extracorporeal membrane oxygenation (ECMO). J Stroke Cerebrovasc Dis. 2020;29(9):105016.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Trzepacz PT. Is there a final common neural pathway in delirium? Focus on acetylcholine and dopamine. Semin Clin Neuropsychiatry. 2000;5(2):132–48.

    CAS  PubMed  Google Scholar 

  56. Maclullich AMJ, et al. Unravelling the pathophysiology of delirium: a focus on the role of aberrant stress responses. J Psychosom Res. 2008;65(3):229–38.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Frontera JA, et al. Toxic metabolic encephalopathy in hospitalized patients with COVID-19. Neurocrit Care. 2021;35:1–14.

    Article  CAS  Google Scholar 

  58. Singh KK, et al. Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am J Physiol Cell Physiol. 2020;319(2):C258–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Wu K, Zou J, Chang HY. RNA-GPS predicts SARS-CoV-2 RNA localization to host mitochondria and nucleolus. bioRxiv. 2020;2020:065201. https://doi.org/10.1101/2020.04.28.065201.

    Article  CAS  Google Scholar 

  60. Kotfis K, et al. COVID-19: ICU delirium management during SARS-CoV-2 pandemic. Crit Care. 2020;24(1):176.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pun BT, et al. Prevalence and risk factors for delirium in critically ill patients with COVID-19 (COVID-D): a multicentre cohort study. Lancet Respir Med. 2021;9(3):239–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kennedy M, et al. Delirium in older patients with COVID-19 presenting to the emergency department. JAMA Netw Open. 2020;3(11):e2029540.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Caress JB, et al. COVID-19—associated Guillain–Barré syndrome: the early pandemic experience. Muscle Nerve. 2020;62(4):485–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Garg RK, Paliwal VK, Gupta A. Encephalopathy in patients with COVID-19: a review. J Med Virol. 2021;93(1):206–22.

    Article  CAS  PubMed  Google Scholar 

  65. Romero-Sánchez CM, et al. Neurologic manifestations in hospitalized patients with COVID-19: the ALBACOVID registry. Neurology. 2020;95(8):e1060–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Cao A, et al. Severe COVID-19-related encephalitis can respond to immunotherapy. Brain. 2020;143(12):e102.

    Article  PubMed  Google Scholar 

  67. RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med. 2021;384(8):693–704.

    Article  Google Scholar 

Download references

Source of Funding

None.

Conflicts of Interest/Disclosures

Sung-Min Cho has nothing to disclose. Rakesh C. Arora has received an unrestricted educational grant from Pfizer Canada Inc. and honoraria from Abbott Nutrition, Edwards Lifesciences, and Mallinckrodt Pharmaceuticals for work unrelated to this chapter. Lavien Premraj has nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Min Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Premraj, L., Arora, R.C., Cho, SM. (2022). Neuropathogenesis and Neurological Manifestations of SARS-CoV-2. In: Battaglini, D., Pelosi, P. (eds) COVID-19 Critical and Intensive Care Medicine Essentials. Springer, Cham. https://doi.org/10.1007/978-3-030-94992-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94992-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94991-4

  • Online ISBN: 978-3-030-94992-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics