Skip to main content

Pathophysiology of Coagulopathy in COVID-19

  • Chapter
  • First Online:
COVID-19 Critical and Intensive Care Medicine Essentials
  • 441 Accesses

Abstract

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is now well established to cause a myriad of coagulation changes. Specifically, SARS-CoV-2 disrupts normal endothelial cell function leading to endotheliosis. The fibrinolytic system is activated, and in cases of severe disease, becomes exhausted leading to hypercoagulability and macro and microthrombosis. In this chapter, we review the mechanisms of coronavirus diasease-2019 (COVID-19) related coagulopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newton AH, Cardani A, Braciale TJ. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. Semin Immunopathol. 2016;38:471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brandao SCS, Ramos JOX, Dompieri LT, et al. Is toll-like receptor 4 involved in the severity of COVID-19 pathology in patients with cardiometabolic comorbidities? Cytokine Growth Factor Rev. 2020;58:102–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Oganesyan G, Saha SK, Guo B, et al. Critical role of TRAF3 in the toll-like receptor-dependent and -independent antiviral response. Nature. 2006;439:208–11.

    Article  CAS  PubMed  Google Scholar 

  4. Vinayagam S, Sattu K. SARS-CoV-2 and coagulation disorders in different organs. Life Sci. 2020;260:118431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Petaja J. Inflammation and coagulation. An overview. Thromb Res. 2011;127(Suppl 2):S34–7.

    Article  PubMed  CAS  Google Scholar 

  6. Goeijenbier M, van Wissen M, van de Weg C, et al. Review: viral infections and mechanisms of thrombosis and bleeding. J Med Virol. 2012;84:1680–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Antoniak S, Mackman N. Multiple roles of the coagulation protease cascade during virus infection. Blood. 2014;123:2605–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Keller TT, van der Sluijs KF, de Kruif MD, et al. Effects on coagulation and fibrinolysis induced by influenza in mice with a reduced capacity to generate activated protein C and a deficiency in plasminogen activator inhibitor type 1. Circ Res. 2006;99:1261–9.

    Article  CAS  PubMed  Google Scholar 

  9. Key NS, Vercellotti GM, Winkelmann JC, et al. Infection of vascular endothelial cells with herpes simplex virus enhances tissue factor activity and reduces thrombomodulin expression. Proc Natl Acad Sci U S A. 1990;87:7095–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shyu HW, Lin YY, Chen LC, et al. The dengue virus envelope protein induced PAI-1 gene expression via MEK/ERK pathways. Thromb Haemost. 2010;104:1219–27.

    Article  CAS  PubMed  Google Scholar 

  11. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Libby P, Luscher T. COVID-19 is, in the end, an endothelial disease. Eur Heart J. 2020;41:3038–44.

    Article  CAS  PubMed  Google Scholar 

  14. Zuo Y, Warnock M, Harbaugh A, et al. Plasma tissue plasminogen activator and plasminogen activator inhibitor-1 in hospitalized COVID-19 patients. Sci Rep. 2021;11:1580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goshua G, Pine AB, Meizlish ML, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020;7:e575–82.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rosell A, Havervall S, von Meijenfeldt F, et al. Patients with COVID-19 have elevated levels of circulating extracellular vesicle tissue factor activity that is associated with severity and mortality. Arterioscler Thromb Vasc Biol. 2020;41(2):878–82.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tabatabai A, Rabin J, Menaker J, et al. Factor VIII and functional protein C activity in critically ill patients with coronavirus disease 2019: a case series. A&A Pract. 2020;14:e01236.

    Article  Google Scholar 

  18. Carty CL, Heagerty P, Heckbert SR, et al. Interaction between fibrinogen and IL-6 genetic variants and associations with cardiovascular disease risk in the cardiovascular health study. Ann Hum Genet. 2010;74:1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ranucci M, Sitzia C, Baryshnikova E, et al. Covid-19-associated coagulopathy: biomarkers of thrombin generation and fibrinolysis leading the outcome. J Clin Med. 2020;9:3487.

    Article  CAS  PubMed Central  Google Scholar 

  20. Bouck EG, Denorme F, Holle LA, et al. COVID-19 and sepsis are associated with different abnormalities in plasma procoagulant and fibrinolytic activity. Arterioscler Thromb Vasc Biol. 2021;41:401–14.

    CAS  PubMed  Google Scholar 

  21. Gazzaruso C, Paolozzi E, Valenti C, et al. Association between antithrombin and mortality in patients with COVID-19. A possible link with obesity. Nutr Metab Cardiovasc Dis. 2020;30:1914–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. von Meijenfeldt FA, Havervall S, Adelmeijer J, et al. Prothrombotic changes in patients with COVID-19 are associated with disease severity and mortality. Res Pract Thromb Haemost. 2021;5:132–41.

    Article  CAS  Google Scholar 

  23. Anakli I, Ergin Ozcan P, Polat O, et al. Prognostic value of antithrombin levels in COVID-19 patients and impact of fresh frozen plasma treatment: a retrospective study. Turk J Haematol. 2021;38:15–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lemke G, Silverman GJ. Blood clots and TAM receptor signalling in COVID-19 pathogenesis. Nat Rev Immunol. 2020;20:395–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang Z. The efficacy of activated protein C for the treatment of sepsis: incorporating observational evidence with a Bayesian approach. BMJ Open. 2015;5:e006524.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ward SE, Curley GF, Lavin M, et al. Von Willebrand factor propeptide in severe coronavirus disease 2019 (COVID-19): evidence of acute and sustained endothelial cell activation. Br J Haematol. 2020;192(4):714–9.

    Article  PubMed  CAS  Google Scholar 

  27. Mancini I, Baronciani L, Artoni A, et al. The ADAMTS13-von Willebrand factor axis in COVID-19 patients. J Thromb Haemost. 2020;19(2):513–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Doevelaar AAN, Bachmann M, Holzer B, et al. von Willebrand factor multimer formation contributes to immunothrombosis in coronavirus disease 2019. Crit Care Med. 2021;49(5):e512–20.

    Article  CAS  PubMed  Google Scholar 

  29. Philippe A, Chocron R, Gendron N, et al. Circulating Von Willebrand factor and high molecular weight multimers as markers of endothelial injury predict COVID-19 in-hospital mortality. Angiogenesis. 2021;24(3):505–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Patel SR, Hartwig JH, Italiano JE Jr. The biogenesis of platelets from megakaryocyte proplatelets. J Clin Investig. 2005;115:3348–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Valdivia-Mazeyra MF, Salas C, Nieves-Alonso JM, et al. Increased number of pulmonary megakaryocytes in COVID-19 patients with diffuse alveolar damage: an autopsy study with clinical correlation and review of the literature. Virchows Arch. 2020;478(3):487–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zaid Y, Guessous F, Puhm F, et al. Platelet reactivity to thrombin differs between patients with COVID-19 and those with ARDS unrelated to COVID-19. Blood Adv. 2021;5:635–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Manne BK, Denorme F, Middleton EA, et al. Platelet gene expression and function in patients with COVID-19. Blood. 2020;136:1317–29.

    Article  CAS  PubMed  Google Scholar 

  34. Hottz ED, Azevedo-Quintanilha IG, Palhinha L, et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood. 2020;136:1330–41.

    Article  CAS  PubMed  Google Scholar 

  35. Hudson NE. Biophysical mechanisms mediating fibrin fiber lysis. Biomed Res Int. 2017;2017:2748340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Zhang L, Yan X, Fan Q, et al. d-Dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. 2020;18:1324–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Artifoni M, Danic G, Gautier G, et al. Systematic assessment of venous thromboembolism in COVID-19 patients receiving thromboprophylaxis: incidence and role of d-dimer as predictive factors. J Thromb Thrombolysis. 2020;50:211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yao Y, Cao J, Wang Q, et al. d-Dimer as a biomarker for disease severity and mortality in COVID-19 patients: a case control study. J Intensive Care. 2020;8:49.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Berger JS, Kunichoff D, Adhikari S, et al. Prevalence and outcomes of d-dimer elevation in hospitalized patients with COVID-19. Arterioscler Thromb Vasc Biol. 2020;40:2539–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Madathil RJ, Tabatabai A, Rabin J, et al. Thromboelastometry and d-dimer elevation in Coronavirus-2019. J Cardiothorac Vasc Anesth. 2020;34(12):3495–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Panigada M, Meli A, Scotti E, et al. Viscoelastic coagulation monitor as a novel device to assess coagulation at the bedside. A single-center experience during the COVID-19 pandemic. ASAIO J. 2021;67:254–62.

    Article  CAS  PubMed  Google Scholar 

  42. Bachler M, Bosch J, Sturzel DP, et al. Impaired fibrinolysis in critically ill COVID-19 patients. Br J Anaesth. 2021;126:590–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mazzeffi, M., Chow, J. (2022). Pathophysiology of Coagulopathy in COVID-19. In: Battaglini, D., Pelosi, P. (eds) COVID-19 Critical and Intensive Care Medicine Essentials. Springer, Cham. https://doi.org/10.1007/978-3-030-94992-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94992-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94991-4

  • Online ISBN: 978-3-030-94992-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics