Skip to main content

Impurity States

  • Chapter
  • First Online:
Luminescent Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 322))

  • 428 Accesses

Abstract

Upon doping an inorganic crystal with lanthanide ions, excited states that alter the local electronic structure of the lanthanide moiety are introduced. The de-excitation of these local excited states underlies the fascinating luminescent properties of these materials. In this Chapter, the numerous states belonging to the (atomic-like) 4\(f^{N}\) and 4\(f^{N-1}\)5\(d\) configurations of the dopants are discussed for various lanthanide-activated materials. In addition, states of so-called impurity trapped exciton (ITE) character, where the dopant is partially oxidized, are described. The complete oxidation or reduction of the dopants in charge-transfer states requires the involvement of two optical centers and is reserved for Chap. 7. Special attention is paid to the quantum chemical and computational recipes and choices that enable one to obtain accurate information on these states from first principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These calculations are performed in the \(D_{2h}\) point symmetry group due to the limitations of the program, which is bound to use abelian groups [15]. The use of a lower symmetry than the real atomic symmetry originates 100–200 cm\(^{-1}\) maximum broken degeneracies in the spin-orbit-free first step. These broken degeneracies are corrected in the spin-orbit-coupling second step by proper averaging. E.g. the energy of a \(^3P\) term used in the second step is the average of the three broken degeneracy energies of the \(^3T_{1g}\) components obtained in the first step.

  2. 2.

    The reason for this is the same behind the ionization potential series: The fourth ionization potential of a lanthanide element Ln (i.e. the ionization potential of Ln\(^{3+}\)) is smaller than the third ionization potential (i.e. the ionization potential of Ln\(^{2+}\)) due to the increase in positive charge. This is also applicable to a 4\(f\) \(\rightarrow \)5\(d\) excitation because it is a first step towards ionization, an incomplete ionization, where the inner 4\(f\) electron has to cross the more external \(5s^25p^6\) shell ending up in an even more external 5\(d\) orbital shell. As a matter of fact, only a 5\(d\) ionization remains for a full ionization, and this is small and almost independent of the lanthanide [41]. Hence, 4\(f\) \(\rightarrow \)5\(d\) excitations and 4\(f\) ionization potentials follow the same trends.

  3. 3.

    Any reference in the following discussion to the 5\(de_g\) shell in difluorides, where Eu\(^{2+}\) occupies an 8-fold coordinated cubic \(O_h\) site, must be changed to 5\(dt_{2g}\) in sulfides, where Eu\(^{2+}\) occupies a 6-fold coordinated octahedral \(O_h\) site, meaning the lowest of the ligand-field split 5\(d\) shells. Equivalently, 5\(dt_{2g}\) in difluorides corresponds to 5\(de_g\) in sulfides, meaning the highest of the 5\(d\) shells.

References

  1. G.H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Interscience Publishers, New York, 1968)

    Google Scholar 

  2. P.A. Tanner, C.S.K. Mak, N.M. Edelstein, K.M. Murdoch, G. Liu, J. Huang, L. Seijo, Z. Barandiarán, J. Amer. Chem. Soc. 125, 13225 (2003)

    Article  CAS  Google Scholar 

  3. L. Seijo, Z. Barandiarán, J. Chem. Phys. 141, 214706/1 (2014)

    Google Scholar 

  4. J. Wen, L. Ning, C.K. Duan, Y. Chen, Y. Zhang, M. Yin, J. Phys. Chem. C 116, 20513 (2012)

    Article  CAS  Google Scholar 

  5. L. Ning, C. Wu, L. Li, L. Lin, C. Duan, Y. Zhang, L. Seijo, J. Phys. Chem. C 116, 18419 (2012)

    Article  CAS  Google Scholar 

  6. L. Ning, F. Yang, C. Duan, Y. Zhang, J. Liang, Z. Cui, J. Phys. Condens. Matter 24, 05502 (2012)

    Article  CAS  Google Scholar 

  7. J. Gracia, L. Seijo, Z. Barandiarán, D. Curulla, H. Niemansverdriet, W. van Gennip, J. Lumin. 128, 1248 (2008)

    Article  CAS  Google Scholar 

  8. L. Seijo, Z. Barandiarán, Phys. Chem. Chem. Phys. 16, 3830 (2014)

    Article  CAS  Google Scholar 

  9. M. Krośnicki, A. Kedziorski, L. Seijo, Z. Barandiarán, J. Phys. Chem. A 118, 358 (2014)

    Article  CAS  Google Scholar 

  10. L. Seijo, J. Chem. Phys. 102, 8078 (1995)

    Article  CAS  Google Scholar 

  11. L. Seijo, Z. Barandiarán, B. Ordejón, Mol. Phys. 101, 73 (2003)

    Article  CAS  Google Scholar 

  12. Z. Barandiarán, L. Seijo, Can. J. Chem. 70, 409 (1992)

    Article  Google Scholar 

  13. J.L. Pascual, L. Seijo, J. Chem. Phys. 102, 5368 (1995)

    Article  CAS  Google Scholar 

  14. W.C. Martin, R. Zalubas, L. Hagan, Atomic Energy Levels - The Rare Earth Elements, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. No. 60 (U. S. GPO, Washington, D. C., 1978)

    Google Scholar 

  15. G. Karlström, R. Lindh, P.A. Malmqvist, B.O. Roos, U. Ryde, V. Veryazov, P.O. Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrady, L. Seijo, Comput. Mater. Sci. 28, 222 (2003)

    Article  CAS  Google Scholar 

  16. Z. Cai, V. Meiser-Uma, C. Froese-Fischer, Phys. Rev. Lett. 68, 297 (1992)

    Article  CAS  Google Scholar 

  17. E. Eliav, U. Kaldor, Y. Ishikawa, Phys. Rev. A 51, 225 (1995)

    Article  CAS  Google Scholar 

  18. R.W.G. Wyckoff, Crystal Structures (Wiley, New York, 1963)

    Google Scholar 

  19. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)

    Article  Google Scholar 

  20. L. van Pieterson, R.T. Wegh, A. Meijerink, M.F. Reid, J. Chem. Phys. 115, 9382 (2001)

    Article  CAS  Google Scholar 

  21. J.J. Joos, D.V. der Heggen, L. Amidani, L. Seijo, Z. Barandiarán, Phys. Rev. B 104, L201108 (2021)

    Article  CAS  Google Scholar 

  22. L. Seijo, Z. Barandiarán, Int. J. Quantum Chem. 60, 617 (1996)

    Article  CAS  Google Scholar 

  23. G. Blasse, B. Grabmaier, Luminescent Materials (Springer, 1994), pp. 1–9

    Google Scholar 

  24. P.A. Tanner, Chem. Soc. Rev. 42, 5090 (2013)

    Article  CAS  Google Scholar 

  25. C. Cascales, J. Fernández, R. Balda, Opt. Express 13, 2141 (2005)

    Article  CAS  Google Scholar 

  26. V.A. Morozov, A. Bertha, K.W. Meert, S. Van Rompaey, D. Batuk, G.T. Martinez, S. Van Aert, P.F. Smet, M.V. Raskina, D. Poelman, A.M. Abakumov, J. Hadermann, Chem. Mater. 25, 4387 (2013)

    Article  CAS  Google Scholar 

  27. J.J. Joos, P.F. Smet, L. Seijo, Z. Barandiarán, Inorg. Chem. Front. 7, 871 (2020)

    Article  CAS  Google Scholar 

  28. L. Seijo, Z. Barandiarán, Computational Chemistry: Reviews of Current Trends, vol. 4, ed. by J. Leszczyński (World Scientific, Singapore, 1999), pp. 55–152

    Google Scholar 

  29. Z. Barandiarán, L. Seijo, J. Chem. Phys. 141, 234704 (2014)

    Google Scholar 

  30. S.V. Gastev, J.K. Choi, R.J. Reeves, Phys. Solid State 51(1), 44 (2009)

    Google Scholar 

  31. M.C. Downer, C.D. Corderomontalvo, H. Crosswhite, Phys. Rev. B 28(9), 4931 (1983)

    Google Scholar 

  32. V. Möllmann, J. Selling, B. Henke, S. Schweizer, P. Keil, V. Lavin, G. Wortmann, Desy annual report (2007)

    Google Scholar 

  33. J. Joos, L. Seijo, Z. Barandiarán, J. Phys. Chem. Lett. 10, 1581 (2019)

    Article  CAS  Google Scholar 

  34. A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team. NIST Atomic Spectra Database (ver. 5.8), [Online]. Available: https://physics.nist.gov/asd [2021, January 25]. National Institute of Standards and Technology, Gaithersburg, MD (2020)

  35. M. de Jong, A. Meijerink, L. Seijo, Z. Barandiarán, J. Phys. Chem. C 121, 10095 (2017)

    Article  CAS  Google Scholar 

  36. J. Grimm, H.U. Güdel, Chem. Phys. Lett. 404, 40 (2005)

    Article  CAS  Google Scholar 

  37. J. Grimm, E. Beurer, H.U. Güdel, Inorg. Chem. 45, 10905 (2006)

    Article  CAS  Google Scholar 

  38. J. Grimm, J.F. Suyver, E. Beurer, G. Carver, H.U. Güdel, J. Phys. Chem. B 110, 2093 (2006)

    Article  CAS  Google Scholar 

  39. J. Kirton, S.D. McLaughlan, Phys. Rev. 155, 279 (1967)

    Article  CAS  Google Scholar 

  40. S.M. Kaczmarek, T. Tsuboi, M. Ito, G. Boulon, G. Leniec, J. Phys. Condens. Matter 17, 3771 (2005)

    Article  CAS  Google Scholar 

  41. F. Ruipérez, Z. Barandiarán, L. Seijo, J. Chem. Phys. 123, 244703 (2005)

    Google Scholar 

  42. L. Seijo, Z. Barandiarán, Opt. Mater. 35, 1932 (2013)

    Article  CAS  Google Scholar 

  43. E.U. Condon, G.H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1935)

    Google Scholar 

  44. L. van Pieterson, M.F. Reid, R.T. Wegh, S. Soverna, A. Meijerink, Phys. Rev. B 65, 045113 (2002)

    Google Scholar 

  45. E. Loh, Phys. Rev. 158, 273 (1967)

    Article  CAS  Google Scholar 

  46. T. Szczurek, M. Schlesinger, in Rare Earth Spectroscopy. ed. by J. Legendziewicz, W. Strek (World Scientific, Singapore, 1985), p. 309

    Google Scholar 

  47. K.D. Oskam, A.J. Houtepen, A. Meijerink, J. Lumin. 97, 107 (2002)

    Article  CAS  Google Scholar 

  48. N. Yamashita, O. Harada, K. Nakamura, Jpn. J. Appl. Phys. 34(10), 5539 (1995)

    Article  CAS  Google Scholar 

  49. M. de Jong, D. Biner, K. Krämer, Z. Barandiarán, L. Seijo, A. Meijerink, J. Phys. Chem. Lett. 7, 2730 (2016)

    Article  CAS  Google Scholar 

  50. D.S. McClure, C. Pédrini, Phys. Rev. B 32, 8465 (1985)

    Article  CAS  Google Scholar 

  51. Z. Pan, C. Duan, P.A. Tanner, Phys. Rev. B 77, 085114 (2008)

    Google Scholar 

  52. G. Sánchez-Sanz, L. Seijo, Z. Barandiarán, J. Chem. Phys. 133, 114509 (2010)

    Google Scholar 

  53. B. Moine, B. Courtois, C. Pédrini, J. Phys. France 50, 2105 (1989)

    Article  CAS  Google Scholar 

  54. G. Sánchez-Sanz, L. Seijo, Z. Barandiarán, Spec. Lett. 43, 393 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoila Barandiarán .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barandiarán, Z., Joos, J., Seijo, L. (2022). Impurity States. In: Luminescent Materials. Springer Series in Materials Science, vol 322. Springer, Cham. https://doi.org/10.1007/978-3-030-94984-6_6

Download citation

Publish with us

Policies and ethics