Skip to main content

Quantum Chemistry Methods

  • Chapter
  • First Online:
Luminescent Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 322))

  • 451 Accesses

Abstract

The methods of Quantum Chemistry used in this book to study crowded manifolds of local excited states of luminescent materials are introduced in this chapter. The embedded-cluster approximation for local states is discussed first, which allows to treat them with the same wave function theory tools used in quantum chemistry for isolated molecules. Then, the chapter goes through the two-component Douglas-Kroll-Hess relativistic Hamiltonian derived from the four-component Dirac Hamiltonian and analyzes its scalar and spin-orbit coupling components. The last part is dedicated to the discussion of the very important but difficult to handle electron correlation and its forms: The static correlation responsible for the configurational multiplets and its handling with CASSCF and RASSCF multiconfigurational variational methods. The dynamic correlation necessary for quantitative accuracy and its handling with MS-CASPT2 and MS-RASPT2 multi-reference perturbational methods. And the simultaneous consideration of electron correlation and spin-orbit coupling by means of the RASSI-SO method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Dirac (kinetic energy) Hamiltonian for a free electron \(\underline{\hat{h}}_\mathrm{D}\) is a 4\(\,\times \,\)4 matrix of operators and the one-electron wave function \(\underline{\phi }\) (or spinor) is a 4\(\,\times \,\)1 vector of 1-electron functions, so that the Dirac equation for one free electron of energy \(\varepsilon \) reads \(\underline{\hat{h}}_\mathrm{D}\,\underline{\phi } = \varepsilon \underline{\phi }\). This equation is equally valid if operator and wave function undergo 4\(\,\times \,\)4 unitary transformations (with an arbitrary 4\(\,\times \,\)4 matrix \(\underline{u}\) that fulfils \(\underline{u}^\dagger \,\underline{u}=\underline{u}\,\underline{u}^\dagger =\boldsymbol{1}\)). In effect, \(\underline{u}\,\underline{\hat{h}}_\mathrm{D}\,\underline{u}^\dagger \underline{u}\underline{\phi } = \varepsilon \underline{u}\,\underline{\phi }\), which gives the equivalent, transformed Dirac equation \(\underline{\hat{h}}_\mathrm{D}^\prime \underline{\phi ^\prime } = \varepsilon \underline{\phi ^\prime }\), with the transformed Hamiltonian \(\underline{\hat{h}}_\mathrm{D}^\prime = \underline{u}\,\underline{\hat{h}}_\mathrm{D}\,\underline{u}^\dagger \) and spinor \(\underline{\phi ^\prime } = \underline{u}\underline{\phi }\).

  2. 2.

    In an \(N\)-electron system, the probability of finding an electron (any of them) in a differential volume dV around a point (x, y, z) is \(\gamma (x,y,z)dV\), where \(\gamma \) is known as the one-particle density function, or electron probability density, or electron density, which varies from point to point and has units of \(V^{-1}\) (as corresponds to being a density). Equivalently, the probability of simultaneously finding an electron in a differential volume \(dV_1\) around a point \((x_1,y_1,z_1)\) and another in a differential volume \(dV_2\) around a point \((x_2,y_2,z_2)\) is \(\Gamma (x_1,y_1,z_1,x_2,y_2,z_2)dV_1dV_2\), where \(\Gamma \) is known as the two-electron probability density or two-electron density function, which depends on the pair of points and has units of \(V^{-2}\) (as corresponds to being a 2-particle density). The one- and two-electron density functions \(\gamma \) and \(\Gamma \) of an \(N\)-electron system are calculated from its many-electron wave function \(\Psi \) (see below), which is a function of the position coordinates x, y, z and spin coordinates \(\sigma \) of all the \(N\) electrons.

    When \(\Gamma (x_1,y_1,z_1,x_2,y_2,z_2) = \gamma (x_1,y_1,z_1) \gamma (x_2,y_2,z_2)\), the wave function \(\Psi \) is said to be uncorrelated, because the probability of finding an electron at point 1 when another electron is already at point 2 (which is calculated substituting \(\gamma (x_2,y_2,z_2)\) by 1 in the formula for \(\Gamma \)) is independent of where the second electron is, regardless of its distance from point 1.

    Correspondingly, when \(\Gamma (x_1,y_1,z_1,x_2,y_2,z_2) \ne \gamma (x_1,y_1,z_1) \gamma (x_2,y_2,z_2)\), i.e. when \(\Gamma (x_1,y_1,z_1,x_2,y_2,z_2) = \gamma (x_1,y_1,z_1) \gamma (x_2,y_2,z_2) [1+f(x_1,y_1,z_1,x_2,y_2,z_2)]\), the probability of finding an electron at point 1 when another electron is at point 2 depends on the position of the second electron (through the function f) and the wave function \(\Psi \) is said to be correlated. The function \(f(x_1,y_1,z_1,x_2,y_2,z_2)\) is a measure of correlation.

    \(\gamma \) is calculated by integrating \(\Psi ^\star \Psi \) over the spatial x, y, z and spin \(\sigma \) coordinates of all \(N\) electrons but one, plus the spin coordinate of the remaining electron, and a factor \(N\) due to the fact that all electrons have the same probability of being at a given point. I.e., \(\gamma (x_1,y_1,z_1) = N\int _{(x_i,y_i,z_i,\sigma _i)_{i=2,\ldots ,N}} \int _{\sigma _1} \Psi ^\star \Psi d\sigma _1 d(x_i,y_i,z_i,\sigma _i)_{i=2,\ldots ,N}\). \(\Gamma \) is calculated the same way, but integrating the coordinates of all electrons but two: \(\Gamma (x_1,y_1,z_1,x_2,y_2,z_2) = N(N-1) \int _{(x_i,y_i,z_i,\sigma _i)_{i=3,\ldots ,N}} \int _{\sigma _1}\int _{\sigma _2} \Psi ^\star \Psi d\sigma _1d\sigma _2 d(x_i,y_i,z_i,\sigma _i)_{i=3,\ldots ,N}\).

  3. 3.

    A spin-orbital \(\psi \) is a one-electron function that results from the product of an orbital \(\varphi \) and a spin function \(\alpha \) or \(\beta \): \(\psi = \varphi \alpha \) or \(\psi = \varphi \beta \).

  4. 4.

    We must be aware of a potentially confusing notation here: Although all multiconfigurational wave functions of the kind (1.43) are in fact CI functions, the name CI methods (and their corresponding CI wave functions) is commonly reserved to the ones now described.

  5. 5.

    In the single and double virtual electron excitations in RASPT2, the electrons go from inactive and active orbitals (i.e. with double and variable occupancy, respectively, in all RASSCF wave functions) to active and virtual (empty) orbitals. Normally, excitations from the innermost inactive orbitals are excluded; in that case, the orbitals are called frozen and dynamic correlation is not considered for their electrons. Choices that allow to exclude dynamic correlation for core electrons while including it for outer-valence and, optionally, inner-valence electrons are commented in Sect. 2.3 and throughout the applications sections.

  6. 6.

    Interestingly, this option is formally a one-step spin-orbit coupling calculation, because the diagonalization of the matrix of \(\hat{H}_\mathrm{EC}^\mathrm{eff}\) on the {\(\Phi ^\text {RAS}_i\)} basis, which is required to obtain the spin-orbit-free MS-CASPT2 energies, is not necessary.

References

  1. H. Bethe, Ann. Phys. 395, 133 (1929)

    Article  Google Scholar 

  2. R. Finkelstein, J.H. Van Vleck, J. Chem. Phys. 8, 790 (1940)

    Article  CAS  Google Scholar 

  3. M.F. Reid, F.S. Richardson, J. Chem. Phys. 83, 3831 (1985)

    Article  CAS  Google Scholar 

  4. B.R. Judd, Phys. Rev. 127, 750 (1962)

    Article  CAS  Google Scholar 

  5. G.S. Ofelt, J. Chem. Phys. 37, 511 (1962)

    Article  CAS  Google Scholar 

  6. P. Hohenberg, W. Kohn, Phys. Rev. B 136, B864 (1964)

    Article  Google Scholar 

  7. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  Google Scholar 

  8. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    Article  CAS  Google Scholar 

  9. J.C. Slater, Quantum Theory of Matter (McGraw-Hill, New York, 1968)

    Google Scholar 

  10. T. Ishii, M.G. Brik, K. Ogasawara, J. Alloys Compd. 380, 136 (2004)

    Article  CAS  Google Scholar 

  11. H. Ramanantoanina, W. Urland, F. Cimpoesu, C. Daul, Phys. Chem. Chem. Phys. 15, 13902 (2013)

    Article  CAS  Google Scholar 

  12. A. Canning, A. Chaudhry, R. Boutchko, N. Grønbech-Jensen, Phys. Rev. B 83, 125115 (2011)

    Google Scholar 

  13. A. Chaudhry, R. Boutchko, S. Chourou, G. Zhang, N. Grønbech-Jensen, A. Canning, Phys. Rev. B 89, 155105 (2014)

    Google Scholar 

  14. K. Choudhary, A. Chernatynskiy, K. Mathew, E.W. Bucholz, S.R. Phillpot, S.B. Sinnott, R.G. Hennig, Appl. Phys. Lett. 107, 112109 (2015)

    Article  CAS  Google Scholar 

  15. A.D. Becke, J. Chem. Phys. 98(2), 1372 (1993)

    Article  CAS  Google Scholar 

  16. J. Wen, L. Ning, C.K. Duan, Y. Chen, Y. Zhang, M. Yin, J. Phys. Chem. C 116, 20513 (2012)

    Article  CAS  Google Scholar 

  17. L. Ning, F. Yang, C. Duan, Y. Zhang, J. Liang, Z. Cui, J. Phys.: Condens. Matter 24, 05502 (2012)

    Google Scholar 

  18. L. Ning, X. Huang, Y. Huang, P.A. Tanner, J. Mater. Chem. C 6, 6637 (2018)

    Article  CAS  Google Scholar 

  19. Q.M. Phung, Z. Barandiarán, L. Seijo, Theor. Chim. Acc. 134, 37 (2015)

    Article  CAS  Google Scholar 

  20. S. Sugano, R.G. Shulman, Phys. Rev. 130, 517 (1963)

    Article  CAS  Google Scholar 

  21. P. Huang, E.A. Carter, Ann. Rev. Phys. Chem. 59, 261 (2008)

    Article  CAS  Google Scholar 

  22. R. McWeeny, Rev. Mod. Phys. 32, 335 (1960)

    Article  Google Scholar 

  23. S. Huzinaga, A.A. Cantu, J. Chem. Phys. 55, 5543 (1971)

    Article  CAS  Google Scholar 

  24. S. Huzinaga, D. McWilliams, A.A. Cantu, Adv. Quantum Chem. 7, 187 (1973)

    Article  CAS  Google Scholar 

  25. S. Huzinaga, L. Seijo, Z. Barandiarán, M. Klobukowski, J. Chem. Phys. 86, 2132 (1987)

    Google Scholar 

  26. Z. Barandiarán, L. Seijo, J. Chem. Phys. 89, 5739 (1988)

    Google Scholar 

  27. L. Seijo, Z. Barandiarán, Computational Chemistry: Reviews of Current Trends, vol. 4 (World Scientific, Singapore, 1999), pp. 55–152

    Google Scholar 

  28. L. Seijo, Z. Barandiarán, J. Chem. Phys. 121, 6698 (2004)

    Article  CAS  Google Scholar 

  29. L. Seijo, S.P. Feofilov, Z. Barandiarán, J. Phys. Chem. Lett. 10, 3176 (2019)

    Article  CAS  Google Scholar 

  30. L. Seijo, Z. Barandiarán, J. Chem. Phys. 94, 8158 (1991)

    Article  CAS  Google Scholar 

  31. P.P. Ewald, Ann. Phys. 369, 253 (1921)

    Article  Google Scholar 

  32. A. Gellé, M.B. Lepetit, J. Chem. Phys. 128, 244716 (2008)

    Google Scholar 

  33. J.L. Pascual, N. Barros, Z. Barandiarán, L. Seijo, J. Phys. Chem. A 113, 12454 (2009)

    Article  CAS  Google Scholar 

  34. A. Warshel, M. Levitt, J. Mol. Biol. 103, 227 (1976)

    Article  CAS  Google Scholar 

  35. J.L. Pascual, L. Seijo, J. Chem. Phys. 102, 5368 (1995)

    Article  CAS  Google Scholar 

  36. B.G. Dick, A.W. Overhauser, Phys. Rev. 112, 90 (1958)

    Article  CAS  Google Scholar 

  37. T. Saue, L. Visscher, Theoretical Chemistry and Physics of Heavy and Superheavy Elements (Springer, Dordrecht, 2003), pp. 211–267

    Book  Google Scholar 

  38. L.L. Foldy, S.A. Wouthuysen, Phys. Rev. 78, 29 (1950)

    Article  Google Scholar 

  39. L. Seijo, J. Chem. Phys. 102, 8078 (1995)

    Article  CAS  Google Scholar 

  40. M. Douglas, N.M. Kroll, Ann. Phys. (N.Y.) 82, 89 (1974)

    Google Scholar 

  41. B.A. Hess, Phys. Rev. A 32, 756 (1985)

    Article  CAS  Google Scholar 

  42. B.A. Hess, Phys. Rev. A 33, 3742 (1986)

    Article  CAS  Google Scholar 

  43. T. Nakajima, K. Hirao, J. Chem. Phys. 113, 7786 (2000)

    Article  CAS  Google Scholar 

  44. H. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer, Berlin, 1957)

    Book  Google Scholar 

  45. M. Blume, R.E. Watson, Proc. R. Soc. London, Ser. A 270, 127 (1962)

    Google Scholar 

  46. M. Blume, R.E. Watson, Proc. R. Soc. London, Ser. A 271, 565 (1963)

    Google Scholar 

  47. B.A. Hess, C.M. Marian, U. Wahlgren, O. Gropen, Chem. Phys. Lett. 251, 365 (1996)

    Article  CAS  Google Scholar 

  48. C.M. Marian, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 187 (2012)

    Article  CAS  Google Scholar 

  49. R. McWeeny, Methods of Molecular Quantum Mechanics, 2nd edn. (Academic Press, London, 1989). (Ch. 14)

    Google Scholar 

  50. C.C.J. Roothaan, Rev. Mod. Phys. 23, 69 (1951)

    Article  CAS  Google Scholar 

  51. J. Rychlewski (ed.), Explicitly Correlated Wave Functions in Chemistry and Physics: Theory and Applications, Progress in Theoretical Chemistry and Physics, vol. 13 (Springer Science & Business Media, New York, 2013)

    Google Scholar 

  52. S. Huzinaga, J. Andzelm, E. Radzio-Andzelm, Y. Sakai, H. Tatewaki, M. Klobukowski, Gaussian Basis Sets for Molecular Calculations (Elsevier, Amsterdam, 2012)

    Google Scholar 

  53. P.O. Widmark, P.A. Malmqvist, B.O. Roos, Theor. Chim. Acta 77, 291 (1990)

    Article  CAS  Google Scholar 

  54. C. Møller, M.S. Plesset, pr 46, 618 (1934)

    Google Scholar 

  55. B.H. Brandow, Rev. Mod. Phys. 39, 771 (1967)

    Article  CAS  Google Scholar 

  56. J.P. Malrieu, J.L. Heullly, A. Zaitzevskii, Theor. Chim. Acta 90, 167 (1995)

    Article  CAS  Google Scholar 

  57. B.O. Roos, Acc. Chem. Res. 32, 137 (1999)

    Article  CAS  Google Scholar 

  58. K. Hirao, Recent Advances in Multireference Methods (World Scientific, Singapore, 1999)

    Book  Google Scholar 

  59. R.J. Bartlett, Annu. Rev. Phys. Chem. 32, 359 (1981)

    Article  CAS  Google Scholar 

  60. I. Shavitt, R.J. Bartlett, Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  61. B.O. Roos, P.R. Taylor, P.E.M. Siegbahn, Chem. Phys. 48, 157 (1980)

    Article  CAS  Google Scholar 

  62. P.E.M. Siegbahn, A. Heiberg, B.O. Roos, B. Levy, Phys. Scr. 21, 323 (1980)

    Article  CAS  Google Scholar 

  63. P.E.M. Siegbahn, A. Heiberg, J. Almlöf, B.O. Roos, J. Chem. Phys. 74, 2384 (1981)

    Article  CAS  Google Scholar 

  64. J. Olsen, B.O. Roos, P. Jørgensen, J.A. Jensen, J. Chem. Phys. 89, 2185 (1988)

    Article  CAS  Google Scholar 

  65. P.A. Malmqvist, A. Rendell, B.O. Roos, J. Phys. Chem. 94, 5477 (1990)

    Article  CAS  Google Scholar 

  66. D. Ma, G.L. Manni, L. Gagliardi, J. Chem. Phys. 135, 044128 (2011)

    Google Scholar 

  67. R.J. Buenker, S.D. Peyerimhoff, Theor. Chim. Acta 35, 33 (1974)

    Article  CAS  Google Scholar 

  68. H. Werner, P.J. Knowles, J. Chem. Phys. 89, 5803 (1988)

    Article  CAS  Google Scholar 

  69. P.J. Knowles, H. Werner, Theor. Chim. Acta 84, 95 (1992)

    Article  CAS  Google Scholar 

  70. R. Ahlrichs, P. Scharf, C. Ehrhardt, J. Chem. Phys. 82, 890 (1985)

    Article  CAS  Google Scholar 

  71. R.J. Gdanitz, R. Ahlrichs, Chem. Phys. Lett. 143, 413 (1988)

    Article  CAS  Google Scholar 

  72. B.O. Roos, P. Linse, P.E.M. Siegbahn, M.R.A. Blomberg, Chem. Phys. 66, 197 (1982)

    Article  CAS  Google Scholar 

  73. K. Andersson, P.A. Malmqvist, B.O. Roos, A.J. Sadlej, K. Wolinski, J. Phys. Chem. 94, 5483 (1990)

    Article  CAS  Google Scholar 

  74. K. Andersson, P.A. Malmqvist, B.O. Roos, J. Chem. Phys. 96, 1218 (1992)

    Article  CAS  Google Scholar 

  75. A. Zaitsevskii, J.P. Malrieu, Chem. Phys. Lett. 233, 597 (1995)

    Article  CAS  Google Scholar 

  76. J. Finley, P.A. Malmqvist, B.O. Roos, L. Serrano-Andrés, Chem. Phys. Lett. 288, 299 (1998)

    Article  CAS  Google Scholar 

  77. P.A. Malmqvist, K. Pierloot, A.R.M. Shahi, C.J. Cramer, L. Gagliardi, J. Chem. Phys. 128, 204109 (2008)

    Google Scholar 

  78. S. Yabushita, Z. Zhang, R.M. Pitzer, J. Phys. Chem. A 103, 5791 (1999)

    Article  CAS  Google Scholar 

  79. R. Llusar, M. Casarrubios, Z. Barandiarán, L. Seijo, J. Chem. Phys. 105, 5321 (1996)

    Article  CAS  Google Scholar 

  80. P.A. Malmqvist, B.O. Roos, B. Schimmelpfennig, Chem. Phys. Lett. 357, 230 (2002)

    Article  CAS  Google Scholar 

  81. J. Paulovic, T. Nakajima, K. Hirao, R. Lindh, P.A. Malmqvist, J. Chem. Phys. 119, 798 (2003)

    Article  CAS  Google Scholar 

  82. G. Karlström, R. Lindh, P.A. Malmqvist, B.O. Roos, U. Ryde, V. Veryazov, P.O. Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrady, L. Seijo, Comput. Mater. Sci. 28, 222 (2003)

    Article  CAS  Google Scholar 

  83. G. Sánchez-Sanz, Z. Barandiarán, L. Seijo, Chem. Phys. Lett. 498, 226 (2010)

    Article  CAS  Google Scholar 

  84. Z. Barandiarán, L. Seijo, The Multi-State CASPT2 Spin-Orbit Method (2010). arXiv:1012.5572v1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoila Barandiarán .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barandiarán, Z., Joos, J., Seijo, L. (2022). Quantum Chemistry Methods. In: Luminescent Materials. Springer Series in Materials Science, vol 322. Springer, Cham. https://doi.org/10.1007/978-3-030-94984-6_1

Download citation

Publish with us

Policies and ethics