Skip to main content

Normal Gastrointestinal Tract Physiology

  • Chapter
  • First Online:
Nutrition, Weight, and Digestive Health

Abstract

The gastrointestinal (GI) tract plays important roles in body homeostasis including regulating the transit of ingested food through the GI tract with efficient digestion and absorption of essential nutrients. Ingested food goes through series of steps through the GI tract including mastication (oral cavity), deglutition (pharynx and esophagus), mixing and digestion (stomach), further digestion and absorption (intestines), and finally storage and defecation (colon). Each organ has a unique structure, movement pattern, and secretion/absorption characteristics well suited to its task. The enteric nervous system, such as the “gut brain,” plays an important role in generating and harmonizing these activities both directly and through various neural and hormonal reflexes. The intestinal tract has a number of endocrine and paracrine activities which regulate various bodily functions inside and outside the GI tract. The gut wall is an important barrier against external pathogens allowing a healthy and essential interaction with the microorganisms that reside inside it (microbiota), a role that has a delicate balance between health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall J. Guyton and Hall textbook of medical physiology. 13th ed. Elsevier Health Sciences; 2016.

    Google Scholar 

  2. Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol. 2012;9:286.

    Article  CAS  PubMed  Google Scholar 

  3. Cheng LK, Du P, O'Grady G. Mapping and modeling gastrointestinal bioelectricity: from engineering bench to bedside. Physiology (Bethesda). 2013;28(5):310–7.

    CAS  Google Scholar 

  4. Huizinga JD, Lammers WJ. Gut peristalsis is governed by a multitude of cooperating mechanisms. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1.

    Article  CAS  PubMed  Google Scholar 

  5. Lammers WJ, Slack JR. Of slow waves and spike patches. News Physiol Sci. 2001;16:138.

    CAS  PubMed  Google Scholar 

  6. Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev. 2014;94:859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mittal R, Debs LH, Patel AP, et al. Neurotransmitters: the critical modulators regulating gut-brain axis. J Cell Physiol. 2017;232(9):2359–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boeckxstaens G, Camilleri M, Sifrim D, et al. Fundamentals of neurogastroenterology: physiology/motility - sensation. Gastroenterology. 2016;150:1292–304.

    Article  Google Scholar 

  9. Distrutti E, Azpiroz F, Soldevilla A, et al. Gastric wall tension determines perception of gastric distention. Gastroenterology. 1999;116:1035–42.

    Article  CAS  PubMed  Google Scholar 

  10. TannerThies R. Physiology: an illustrated review. New York: Thieme Medical Pub; 2012.

    Google Scholar 

  11. Lund JP, Kolta A. Brainstem circuits that control mastication: do they have anything to say during speech? J Commun Disord. 2006;39(5):381–90.

    Article  PubMed  Google Scholar 

  12. Matsuo K, Palmer JB. Anatomy and physiology of feeding and swallowing: normal and abnormal. Phys Med Rehabil Clin N Am. 2008;19(4):691–707, vii.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lang IM. Brain stem control of the phases of swallowing. Dysphagia. 2009;24(3):333–48.

    Article  PubMed  Google Scholar 

  14. Costa MM, Lemme EM. Coordination of respiration and swallowing: functional pattern and relevance of vocal folds closure. Arq Gastroenterol. 2010;47(1):42–8.

    Article  PubMed  Google Scholar 

  15. Bieger D. Neuropharmacologic correlates of deglutition: lessons from fictive swallowing. Dysphagia. 1991;6:147–64.

    Article  CAS  PubMed  Google Scholar 

  16. Tack J, Demedts I, Meulemans A, et al. Role of nitric oxide in the gastric accommodation reflex and in meal induced satiety in humans. Gut. 2002;51:219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mittal RK, Padda B, Bhalla V, et al. Synchrony between circular and longitudinal muscle contractions during peristalsis in normal subjects. Am J Physiol Gastrointest Liver Physiol. 2006;290:G431–8.

    Article  CAS  PubMed  Google Scholar 

  18. Mittal RK, Balaban DH. The esophagogastric junction. N Engl J Med. 1997;336:924–32.

    Article  CAS  PubMed  Google Scholar 

  19. Browning KN, Travagli RA. Central control of gastrointestinal motility. Curr Opin Endocrinol Diabetes Obes. 2019;26(1):11–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Côté CD, Zadeh-Tahmasebi M, Rasmussen BA, et al. Hormonal signaling in the gut. J Biol Chem. 2014;289:11642.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Takahashi T. Interdigestive migrating motor complex -its mechanism and clinical importance. J Smooth Muscle Res. 2013;49:99–111.

    Article  PubMed  CAS  Google Scholar 

  22. Delporte C. Structure and physiological actions of ghrelin. Scientifica (Cairo). 2013;2013:518909.

    Google Scholar 

  23. Asakawa A, Inui A, Kaga T, et al. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology. 2001;120(2):337–45.

    Article  CAS  PubMed  Google Scholar 

  24. Fujino K, Inui A, Asakawa A, Kihara N, Fujimura M, Fujimiya M. Ghrelin induces fasted motor activity of the gastrointestinal tract in conscious fed rats. J Physiol (Lond). 2003;550(Pt 1):227–40.

    Article  CAS  Google Scholar 

  25. Tschöp M, Wawarta R, Riepl RL, et al. Post-prandial decrease of circulating human ghrelin levels. J Endocrinol Invest. 2001;24(6):RC19–21.

    Article  PubMed  Google Scholar 

  26. Huizinga JD, Chen JH, Zhu YF, et al. The origin of segmentation motor activity in the intestine. Nat Commun. 2014;5:3326.

    Article  PubMed  CAS  Google Scholar 

  27. Kumral D, Zfass AM. Gut movements: a review of the physiology of gastrointestinal transit. Dig Dis Sci. 2018;63(10):2500–6.

    Article  PubMed  Google Scholar 

  28. Steadman CJ, Phillips SF, Camilleri M, et al. Variation of muscle tone in the human colon. Gastroenterology. 1991;101:373–81.

    Article  CAS  PubMed  Google Scholar 

  29. Ford MJ, Camilleri M, Wiste JA, et al. Differences in colonic tone and phasic response to a meal in the transverse and sigmoid human colon. Gut. 1995;37:264–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Furukawa Y, Cook IJ, Panagopoulos V, et al. Relationship between sleep patterns and human colonic motor patterns. Gastroenterology. 1994;107:1372–81.

    Article  CAS  PubMed  Google Scholar 

  31. Bampton PA, Dinning PG, Kennedy ML, et al. Prolonged multi-point recording of colonic manometry in the un- prepared human colon: providing insight into potentially relevant pressure wave parameters. Am J Gastroenterol. 2001;96:1838–48.

    Article  CAS  PubMed  Google Scholar 

  32. Palit S, Lunniss PJ, Scott SM. The physiology of human defecation. Dig Dis Sci. 2012;57(6):1445–64.

    Article  PubMed  Google Scholar 

  33. Allen A, Flemström G. Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am J Physiol Cell Physiol. 2005;288:C1.

    Article  CAS  PubMed  Google Scholar 

  34. Humphrey SP, Williamson RT. A review of saliva: normal composition, flow, and function. J Prosthet Dent. 2001;85(2):162–9.

    Article  CAS  PubMed  Google Scholar 

  35. Long JD, Orlando RC. Esophageal submucosal glands: structure and function. Am J Gastroenterol. 1999;94(10):2818–24.

    Article  CAS  PubMed  Google Scholar 

  36. Schubert ML. Gastric secretion. Curr Opin Gastroenterol. 2011;27(6):536–42.

    Article  CAS  PubMed  Google Scholar 

  37. Soybel DI. Anatomy and physiology of the stomach. Surg Clin North Am. 2005;85(5):875–94, v.

    Article  PubMed  Google Scholar 

  38. Johnson CD, Mole DR, Pestridge A. Postprandial alkaline tide: does it exist? Digestion. 1995;56(2):100–6.

    Article  CAS  PubMed  Google Scholar 

  39. Dimaline R, Varro A. Novel roles of gastrin. J Physiol. 2014;592:2951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Makhlouf GM, Schubert ML. Gastric somatostatin: a paracrine regulator of acid secretion. Metab Clin Exp. 1990;39(9 Suppl 2):138–42.

    Article  CAS  PubMed  Google Scholar 

  41. Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol. 2014;4(4):1339–68.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Johansson ME, Sjövall H, Hansson GC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol. 2013;10(6):352–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pallagi P, Hegyi P, Rakonczay Z. The physiology and pathophysiology of pancreatic ductal secretion: the background for clinicians. Pancreas. 2015;44(8):1211–33.

    Article  CAS  PubMed  Google Scholar 

  44. Manohar M, Verma AK, Venkateshaiah SU, Sanders NL, Mishra A. Pathogenic mechanisms of pancreatitis. World J Gastrointest Pharmacol Ther. 2017;8(1):10–25.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chandra R, Liddle RA. Neural and hormonal regulation of pancreatic secretion. Curr Opin Gastroenterol. 2009;25(5):441–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Boyer JL. Bile formation and secretion. Compr Physiol. 2013;3:1035.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shiffman ML, Sugerman HJ, Moore EW. Human gallbladder mucosal function. Effect of concentration and acidification of bile on cholesterol and calcium solubility. Gastroenterology. 1990;99(5):1452–9.

    Article  CAS  PubMed  Google Scholar 

  48. Staels B, Fonseca VA. Bile acids and metabolic regulation: mechanisms and clinical responses to bile acid sequestration. Diabetes Care. 2009;32 Suppl 2:S237–45.

    Article  PubMed  CAS  Google Scholar 

  49. Wong BS, Camilleri M, Carlson P, et al. Increased bile acid biosynthesis is associated with irritable bowel syndrome with diarrhea. Clin Gastroenterol Hepatol. 2012;10:1009–1015 e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Abrahamsson H, Ostlund-Lindqvist AM, Nilsson R, et al. Altered bile acid metabolism in patients with constipation-predominant irritable bowel syndrome and functional constipation. Scand J Gastroenterol. 2008;43:1483–8.

    Article  CAS  PubMed  Google Scholar 

  51. Wright EM, Martín MG, Turk E. Intestinal absorption in health and disease--sugars. Best Pract Res Clin Gastroenterol. 2003;17(6):943–56.

    Article  CAS  PubMed  Google Scholar 

  52. Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;291:733.

    Article  CAS  Google Scholar 

  53. Goodman BE. Insights into digestion and absorption of major nutrients in humans. Adv Physiol Educ. 2010;34(2):44–53.

    Article  PubMed  Google Scholar 

  54. Black DD. Development and physiological regulation of intestinal lipid absorption. I. Development of intestinal lipid absorption: cellular events in chylomicron assembly and secretion. Am J Physiol Gastrointest Liver Physiol. 2007;293:G519.

    Article  CAS  PubMed  Google Scholar 

  55. Lowe ME. Structure and function of pancreatic lipase and colipase. Annu Rev Nutr. 1997;17:141–58. https://doi.org/10.1146/annurev.nutr.17.1.141.

    Article  CAS  PubMed  Google Scholar 

  56. Banks MR, Farthing MJ. Fluid and electrolyte transport in the small intestine. Curr Opin Gastroenterol. 2002;18(2):176–81.

    Article  CAS  PubMed  Google Scholar 

  57. Kunzelmann K, Mall M. Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev. 2002;82:245.

    Article  CAS  PubMed  Google Scholar 

  58. Bachmann O, Juric M, Seidler U, et al. Basolateral ion transporters involved in colonic epithelial electrolyte absorption, anion secretion and cellular homeostasis. Acta Physiol (Oxf). 2011;201:33.

    Article  CAS  Google Scholar 

  59. Przybyszewska J, Zekanowska E. The role of hepcidin, ferroprotein, HCP1, and DMT1 protein in iron absorption in the human digestive tract. Prz Gastroenterol. 2014;9(4):208–13.

    PubMed  PubMed Central  Google Scholar 

  60. Yamaji S, Tennant J, Tandy S, Williams M, Singh Srai SK, Sharp P. Zinc regulates the function and expression of the iron transporters DMT1 and IREG1 in human intestinal Caco-2 cells. FEBS Lett. 2001;507(2):137–41.

    Article  CAS  PubMed  Google Scholar 

  61. O’leary F, Samman S. Vitamin B12 in health and disease. Nutrients. 2010;2(3):299–316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Camilleri M, Madsen K, Spiller R, et al. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil. 2012;24:503–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Neunlist M, Van Landeghem L, Mahe MM, et al. The digestive neuronal-glial-epithelial unit: a new actor in gut health and disease. Nat Rev Gastroenterol Hepatol. 2013;10:90–100.

    Article  CAS  PubMed  Google Scholar 

  64. Vancamelbeke M, Vermeire S. The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol. 2017;11(9):821–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Salvo Romero E, Alonso Cotoner C, Pardo Camacho C, Casado Bedmar M, Vicario M. The intestinal barrier function and its involvement in digestive disease. Rev Esp Enferm Dig. 2015;107(11):686–96.

    CAS  PubMed  Google Scholar 

  66. Van der Sluis M, De Koning BA, De Bruijn AC, et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology. 2006;131(1):117–29.

    Article  PubMed  CAS  Google Scholar 

  67. Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 2018;50(8):103.

    Article  PubMed Central  CAS  Google Scholar 

  68. Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9(11):799–809.

    Article  CAS  PubMed  Google Scholar 

  69. Villani AC, Lemire M, Thabane M, et al. Genetic risk factors for post-infectious irritable bowel syndrome following a waterborne outbreak of gastroenteritis. Gastroenterology. 2010;138:1502–13.

    Article  CAS  PubMed  Google Scholar 

  70. Zhou Q, Souba WW, Croce CM, et al. MicroRNA-29a regulates intestinal membrane permeability in patients with irritable bowel syndrome. Gut. 2010;59:775–84.

    Article  CAS  PubMed  Google Scholar 

  71. Santos J, Saperas E, Nogueiras C, et al. Release of mast cell mediators into the jejunum by cold pain stress in humans. Gastroenterology. 1998;114:640–8.

    Article  CAS  PubMed  Google Scholar 

  72. Shimizu M. Interaction between food substances and the intestinal epithelium. Biosci Biotechnol Biochem. 2010;74(2):232–41.

    Article  CAS  PubMed  Google Scholar 

  73. De Santis S, Cavalcanti E, Mastronardi M, Jirillo E, Chieppa M. Nutritional keys for intestinal barrier modulation. Front Immunol. 2015;6:612.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Vogiatzoglou A, Mulligan AA, Lentjes MA, et al. Flavonoid intake in European adults (18 to 64 years). PLoS One. 2015;10(5):e0128132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Anhê FF, Roy D, Pilon G, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut. 2015;64(6):872–83.

    Article  PubMed  CAS  Google Scholar 

  76. Martinez-Medina M, Denizot J, Dreux N, et al. Western diet induces dysbiosis with increased E coli in CEABAC10 mice, alters host barrier function favoring AIEC colonization. Gut. 2014;63(1):116–24.

    Article  PubMed  CAS  Google Scholar 

  77. Chassaing B, Koren O, Goodrich JK, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519(7541):92–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Elamin EE, Masclee AA, Dekker J, Jonkers DM. Ethanol metabolism and its effects on the intestinal epithelial barrier. Nutr Rev. 2013;71(7):483–99.

    Article  PubMed  Google Scholar 

  79. Malaguarnera G, Giordano M, Nunnari G, Bertino G, Malaguarnera M. Gut microbiota in alcoholic liver disease: pathogenetic role and therapeutic perspectives. World J Gastroenterol. 2014;20(44):16639–48.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bjarnason I, Takeuchi K. Intestinal permeability in the pathogenesis of NSAID-induced enteropathy. J Gastroenterol. 2009;44(Suppl 19):23–9.

    Article  CAS  PubMed  Google Scholar 

  81. Rodiño-Janeiro BK, Alonso-Cotoner C, Pigrau M, Lobo B, Vicario M, Santos J. Role of corticotropin-releasing factor in gastrointestinal permeability. J Neurogastroenterol Motil. 2015;21(1):33–50.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Vanuytsel T, van Wanrooy S, Vanheel H, et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut. 2014;63(8):1293–9.

    Article  CAS  PubMed  Google Scholar 

  83. Johansson ME, Gustafsson JK, Holmén-Larsson J, et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut. 2014;63(2):281–91.

    Article  CAS  PubMed  Google Scholar 

  84. De Souza HS, Fiocchi C. Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol. 2016;13(1):13–27.

    Article  PubMed  CAS  Google Scholar 

  85. Vogelsang H. Do changes in intestinal permeability predict disease relapse in Crohn’s disease? Inflamm Bowel Dis. 2008;14(Suppl 2):S162–3.

    Article  PubMed  Google Scholar 

  86. Heyman M, Abed J, Lebreton C, Cerf-Bensussan N. Intestinal permeability in coeliac disease: insight into mechanisms and relevance to pathogenesis. Gut. 2012;61(9):1355–64.

    Article  CAS  PubMed  Google Scholar 

  87. Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev. 2011;91(1):151–75.

    Article  CAS  PubMed  Google Scholar 

  88. Giorgio V, Miele L, Principessa L, et al. Intestinal permeability is increased in children with non-alcoholic fatty liver disease, and correlates with liver disease severity. Dig Liver Dis. 2014;46(6):556–60.

    Article  PubMed  Google Scholar 

  89. Harte AL, da Silva NF, Creely SJ, et al. Elevated endotoxin levels in non-alcoholic fatty liver disease. J Inflamm (Lond). 2010;7:15.

    Article  CAS  Google Scholar 

  90. Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin Gastroenterol. 2015;31(1):69–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li J, Jia H, Cai X, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol. 2014;32:834–41. PubMed PMID: 24997786.

    Article  CAS  PubMed  Google Scholar 

  92. Ding T, Schloss PD. Dynamics and associations of microbial community types across the human body. Nature. 2014;509(7500):357–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Faith JJ, Guruge JL, Charbonneau M, et al. The long-term stability of the human gut microbiota. Science. 2013;341(6141):1237439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407–15.

    Article  PubMed  CAS  Google Scholar 

  95. Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 2014;146(6):1489–99.

    Article  CAS  PubMed  Google Scholar 

  96. Gevers D, Kugathasan S, Denson LA, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15(3):382–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fukui H, Xin X, Miwa H. Role of gut microbiota-gut hormone axis in the pathophysiology of functional gastrointestinal disorders. J Neurogastroenterol Motil. 2018;24:367.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Igarashi M, Nakae H, Matsuoka T, et al. Alteration in the gastric microbiota and its restoration by probiotics in patients with functional dyspepsia. BMJ Open Gastroenterol. 2017;4:e000144.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Halmos EP, Power VA, Shepherd SJ, et al. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology. 2014;146(1):67–75. e5.

    Article  CAS  PubMed  Google Scholar 

  100. El-Salhy M, Mazzawi T. Fecal microbiota transplantation for managing irritable bowel syndrome. Expert Rev Gastroenterol Hepatol. 2018;12:439–45.

    Article  CAS  PubMed  Google Scholar 

  101. Johnsen PH, Hilpüsch F, Cavanagh JP, et al. Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: a double-blind, randomized, placebo-controlled, parallel-group, single-centre trial. Lancet Gastroenterol Hepatol. 2018;3:17–24.

    Article  PubMed  Google Scholar 

  102. TannerThies R. Physiology—an illustrated review. 1st ed; 2011.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush Shahsavari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahsavari, D., Parkman, H.P. (2022). Normal Gastrointestinal Tract Physiology. In: Newberry, C., Laster, J., Pickett-Blakely, O. (eds) Nutrition, Weight, and Digestive Health. Springer, Cham. https://doi.org/10.1007/978-3-030-94953-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94953-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94952-5

  • Online ISBN: 978-3-030-94953-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics