Skip to main content

Photon Application in the Design of Sustainable Buildings to Console Global Energy and Environment

  • Chapter
  • First Online:
Sustainable Design for Global Equilibrium

Abstract

Photon energy has been implemented to design the sustainable building where at least 25% of its exterior curtain skin wall could be used as the acting photovoltaic (PV) panel to trap the solar energy to transform into electricity to satisfy energy demand for a building itself without any outsource connection. Given the current rate of conventional fuel consumption, atmospheric greenhouse gas emission (GHGs) increasing rapidly where building sector along responsible for 40% GHGs emission. These GHGs ultimately cause environmental vulnerabilities such as climate change, stratospheric ozone depletion, acid rain, flooding, and air toxicity which threaten the survival of all living beings on Earth. Therefore, the mechanism of photophysical transformation by the acting PV panel of the building exterior skin in response to solar radiation shall indeed be a cutting-edge technology to console the global energy demand and mitigate the climate change perplexity dramatically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Andreas, K. Norbert, R. Gerhard, R. Stephan, A quantum gate between a flying optical photon and a single trapped atom (RESEARCH: LETTER) (Report). Nature (10 Apr 2014)

    Google Scholar 

  2. D.K. Armani, T.J. Kippenberg, S.M. Spillane, K.J. Vahala, Ultra-high-Q toroid microcavity on a chip. Nature 421, 925 (2003)

    Article  Google Scholar 

  3. N. Artemyev, U.D. Jentschura, V.G. Serbo, A. Surzhykov, Strong electromagnetic field effects in ultra-relativistic heavy-ion collisions. Eur. Phys. J. C 72, 1935 (2012)

    Article  Google Scholar 

  4. H.F. Beyer, T. Gassner, M. Trassinelli, R. Heß, U. Spillmann, D. Banaś, K.-H. Blumenhagen, F. Bosch, C. Brandau, W. Chen, E. Chr Dimopoulou, R.E. Förster, A.G. Grisenti, S. Hagmann, P.-M. Hillenbrand, P. Indelicato, P. Jagodzinski, T. Kämpfer, M. Chr Kozhuharov, D.L. Lestinsky, Y.A. Litvinov, R. Loetzsch, B. Manil, R. Märtin, F. Nolden, N. Petridis, M.S. Sanjari, K.S. Schulze, M. Schwemlein, A. Simionovici, M. Steck, C.I. Th Stöhlker, S.T. Szabo, I. Uschmann, G. Weber, O. Wehrhan, N. Winckler, D.F.A. Winters, N. Winters, E. Ziegler, Crystal optics for precision X-ray spectroscopy on highly charged ions—Conception and proof. J. Phys. B At. Mol. Opt. Phys. 48, 144010 (2015)

    Article  Google Scholar 

  5. K.M. Birnbaum et al., Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005)

    Article  Google Scholar 

  6. K. Busch, G. von Freymann, S. Linden, S.F. Mingaleev, L. Tkeshelashvili, M. Wegener, Periodic nanostructures for photonics. Phys. Rep. 444, 101 (2007)

    Article  Google Scholar 

  7. D.E. Chang, A.S. Sørensen, E.A. Demler, M.D. Lukin, A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807–812 (2007)

    Article  Google Scholar 

  8. J. Chen, C. Wang, R. Zhang, J. Xiao, Multiple plasmon-induced transparencies in coupled-resonator systems. Opt. Lett. 37, 5133–5135 (2012)

    Article  Google Scholar 

  9. M. Cheng, Y. Song, Fano resonance analysis in a pair of semiconductor quantum dots coupling to a metal nanowire. Opt. Lett. 37, 978–980 (2012)

    Article  Google Scholar 

  10. B. Dayan et al., A photon turnstile dynamically regulated by one atom. Science 319, 1062–1065 (2008)

    Article  Google Scholar 

  11. J.S. Douglas, H. Habibian, C. Hung, A. Gorshkov, H. Kimble, D. Chang, Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photonics 9, 326–331 (2015)

    Article  Google Scholar 

  12. J. Eichler, T. Stöhlker, Radiative electron capture in relativistic ion-atom collisions and the photoelectric effect in hydrogen-like high-Z systems. Phys. Rep. 439, 1 (2007)

    Article  Google Scholar 

  13. D. Englund et al., Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity. Phys. Rev. Lett. 104, 073904 (2010)

    Article  Google Scholar 

  14. S. Gleyzes et al., Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446, 297 (2007)

    Article  Google Scholar 

  15. R.J. Gould, Pair production in photon-photon collisions. Phys. Rev. 155, 1404 (1967)

    Article  Google Scholar 

  16. C. Guerlin et al., Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 889 (2007)

    Article  Google Scholar 

  17. N. Gupta, S.P. Singh, S.P. Dubey, D.K. Palwalia, Fuzzy logic controlled three-phase three-wired shunt active power filter for power quality improvement. Int. Rev. Electr. Eng. 6(3), 1118–1129 (2011)

    Google Scholar 

  18. Z. Han, S.I. Bozhevolnyi, Plasmon-induced transparency with detuned ultracompact Fabry-Pérot resonators in integrated plasmonic devices. Opt. Exp. 19, 3251–3257 (2011)

    Article  Google Scholar 

  19. K. Hencken, Transverse momentum distribution of vector mesons produced in ultraperipheral relativistic heavy ion collisions. Phys. Rev. Lett. 96, 012303 (2006)

    Article  Google Scholar 

  20. M.F. Hossain, Solar energy integration into advanced building design for meeting energy demand. Int. J. Energy Res. 40, 1293–1300 (2016)

    Article  Google Scholar 

  21. M.F. Hossain, Design and construction of ultra-relativistic collision PV panel and its application into building sector to mitigate total energy demand. J Build. Eng. (2017a). https://doi.org/10.1016/j.jobe.2016.12.005

  22. M.F. Hossain, Green science: Independent building technology to mitigate energy, environment, and climate change. Renew. Sustain. Energy Rev. (2017b). https://doi.org/10.1016/j.rser.2017.01.136

  23. M.F. Hossain, Photonic thermal energy control to naturally cool and heat the building. Adv. Ther. Eng. 131, 576–586 (2018a)

    Google Scholar 

  24. M.F. Hossain, Green science: Advanced building design technology to mitigate energy and environment. Renew. Sustain. Energy Rev. 81(2), 3051–3060 (2018b)

    Article  MathSciNet  Google Scholar 

  25. M.F. Hossain, Transforming dark photon into sustainable energy. Int. J. Energy Environ. Eng. (2018c). https://doi.org/10.1007/s40095-017-0257-1

  26. Y. Huang, C. Min, G. Veronis, Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency. Appl. Phys. Lett. 99, 143117 (2011)

    Article  Google Scholar 

  27. J.F. Huang, T. Shi, C.P. Sun, F. Nori, Controlling single-photon transport in waveguides with finite cross section. Phys. Rev. A 88, 013836 (2013)

    Article  Google Scholar 

  28. U. Jentschura, K. Hencken, V. Serbo, Revisiting unitarity corrections for electromagnetic processes in collisions of relativistic nuclei. Eur. Phys. J. C 58(2), 281–289 (2008)

    Article  Google Scholar 

  29. J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Photonic crystals: Putting a new twist on light. Nature 386, 143 (1997)

    Article  Google Scholar 

  30. S.A. Klein, Calculation of flat-plate collector loss coefficients. Sol. Energy 17, 79–80 (1975)

    Article  Google Scholar 

  31. A.G. Kofman, G. Kurizki, B. Sherman, Spontaneous and induced atomic decay in photonic band structures. J. Mod. Opt. 41, 353 (1994)

    Article  Google Scholar 

  32. P. Kolchin, R.F. Oulton, X. Zhang, Nonlinear quantum optics in a waveguide: Distinct single photons strongly interacting at the single atom level. Phys. Rev. Lett. 106, 113601 (2011)

    Article  Google Scholar 

  33. C. Lang et al., Observation of resonant photon blockade at microwave frequencies using correlation function measurements. Phys. Rev. Lett. 106, 243601 (2011)

    Article  Google Scholar 

  34. C.U. Lei, W.M. Zhang, A quantum photonic dissipative transport theory. Ann. Phys. 327, 1408 (2012)

    Article  MATH  Google Scholar 

  35. Q. Li, D.Z. Xu, C.Y. Cai, C.P. Sun, Recoil effects of a motional scatterer on single-photon scattering in one dimension. Sci. Rep. 3, 3144 (2013)

    Article  Google Scholar 

  36. J.Q. Liao, C.K. Law, Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity. Phys. Rev. A 82, 053836 (2010)

    Article  Google Scholar 

  37. J.Q. Liao, C.K. Law, Correlated two-photon scattering in cavity optomechanics. Phys. Rev. A 87, 043809 (2013)

    Article  Google Scholar 

  38. P. Lo, H. Xiong, W. Zhang, Breakdown of Bose-Einstein distribution in photonic crystals. Sci. Rep 5, 9423 (2015)

    Article  Google Scholar 

  39. P. Longo, P. Schmitteckert, K. Busch, Few-photon transport in low-dimensional systems. Phys. Rev. A 83, 063828 (2011)

    Article  Google Scholar 

  40. X. Lü, W. Zhang, S. Ashhab, Y. Wu, F. Nori, Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems. Sci. Rep 3, 2943 (2013)

    Article  Google Scholar 

  41. M.T. Manzoni, D.E. Chang, J.S. Douglas, Simulating quantum light propagation through atomic ensembles using matrix product states. Nat. Commun. 8, 1743 (2017)

    Article  Google Scholar 

  42. H. Matteo Mariantoni, R.C. Wang, M.L. Bialczak, et al., Photon shell game in three-resonator circuit quantum electrodynamics. Nat. Phys. 7, 287–293 (2011)

    Article  Google Scholar 

  43. B. Najjari, A. Voitkiv, A. Artemyev, A. Surzhykov, Simultaneous electron capture and bound-free pair production in relativistic collisions of heavy nuclei with atoms. Phys. Rev. A 80, 012701 (2009)

    Article  Google Scholar 

  44. D. O’Shea, C. Junge, J. Volz, A. Rauschenbeutel, Fiber-optical switch controlled by a single atom. Phys. Rev. Lett. 111, 193601 (2013)

    Article  Google Scholar 

  45. H. Okamoto, K. Yamaguchi, M. Haraguchi, T. Okamoto, Development of plasmonic racetrack resonators with a trench structure, in Plasmonics Metallic Nanostructures and Their Optical Properties X, (SPIE, San Diego, CA, 2012)

    Google Scholar 

  46. A.V. Poshakinskiy, A.N. Poddubn, Biexciton-mediated superradiant photon blockade. Phys. Rev. A 93, 033856 (2016)

    Article  Google Scholar 

  47. H. Rauh, Optical transmittance of photonic structures with linearly graded dielectric constituents. N. J. Phys. 12, 073033 (2010)

    Article  MATH  Google Scholar 

  48. A. Reinhard, Strongly correlated photons on a chip. Nat. Photonics 6, 93–96 (2012)

    Article  Google Scholar 

  49. D. Roy, Two-photon scattering of a tightly focused weak light beam from a small atomic ensemble: An optical probe to detect atomic level structures. Phys. Rev. A 87, 063819 (2013)

    Article  Google Scholar 

  50. E. Saloux, A. Teyssedou, M. Sorin, Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point. Sol. Energy 85, 713–722 (2011)

    Article  Google Scholar 

  51. C. Sánchez Muñoz, F. Laussy, E. Valle, C. Tejedor, A. González-Tudela, Filtering multiphoton emission from state-of-the-art cavity quantum electrodynamics. Optica 5(1), 14–26 (2018)

    Article  Google Scholar 

  52. C. Sayrin et al., Real-time quantum feedback prepares and stabilizes photon number states. Nature 477, 73 (2011)

    Article  Google Scholar 

  53. J.T. Shen, S. Fan, Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system. Phys. Rev. Lett. 98, 153003 (2007)

    Article  Google Scholar 

  54. T. Shi, S. Fan, C.P. Sun, Two-photon transport in a waveguide coupled to a cavity in a two-level system. Phys. Rev. A 84, 063803 (2011)

    Article  Google Scholar 

  55. M.S. Tame, K.R. McEnery, Ş.K. Özdemir, J. Lee, S.A. Maier, M.S. Kim, Quantum plasmonics. Nat. Phys. 9, 329–340 (2013)

    Article  Google Scholar 

  56. J. Tang, W. Geng, X. Xiulai, Quantum interference induced photon blockade in a coupled single quantum dot-cavity system. Sci. Rep. 5, 9252 (2015)

    Article  Google Scholar 

  57. M.W.Y. Tu, W.M. Zhang, Non-Markovian decoherence theory for a double-dot charge qubit. Phys. Rev. B 78, 235311 (2008)

    Article  Google Scholar 

  58. S.R. Valluri, U. Becker, N. Grün, W. Scheid, Relativistic collisions of highly-charged ions. J. Phys. B At. Mol. Phys. 17, 4359 (1984)

    Article  Google Scholar 

  59. Y. Wang, Y. Zhang, Q. Zhang, B. Zou, U. Schwingenschlogl, Dynamics of single photon transport in a one-dimensional waveguide twopoint coupled with a Jaynes-Cummings system. Sci. Rep. 6, 33867 (2016)

    Article  Google Scholar 

  60. Y.F. Xiao et al., Asymmetric Fano resonance analysis in indirectly coupled microresonators. Phys. Rev. A 82, 065804 (2010)

    Article  Google Scholar 

  61. W. Yan, H. Fan, Single-photon quantum router with multiple output ports. Sci. Rep. 4, 4820 (2014)

    Article  Google Scholar 

  62. W. Yan, J. Huang, H. Fan, Tunable single-photon frequency conversion in a Sagnac interferometer. Sci. Rep. 3, 3555 (2013)

    Article  Google Scholar 

  63. L. Yang, S. Wang, Q. Zeng, Z. Zhang, T. Pei, Y. Li, L. Peng, Efficient photovoltage multiplication in carbon nanotubes. Nat. Photonics 5, 672–676 (2011)

    Article  Google Scholar 

  64. G. Yu, A novel two-mode MPPT control algorithm based on comparative study of existing algorithms. Sol. Energy 76(4), 455–463 (2004)

    Article  Google Scholar 

  65. Z. Yu, X. Hu, H. Yang, Q. Gong, On-chip plasmon-induced transparency based on plasmonic coupled nanocavities. Sci. Rep. 4, 3752 (2014)

    Google Scholar 

  66. W.M. Zhang, P.Y. Lo, H.N. Xiong, M.W.Y. Tu, F. Nori, General Non-Markovian dynamics of open quantum systems. Phys. Rev. Lett. 109, 170402 (2012)

    Article  Google Scholar 

  67. W. Zhou, A novel model for photovoltaic array performance prediction. Appl. Energy 84(12), 1187–1198 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Green Globe Technology, Inc. under grant RD-02018-03 for building a better environment. Any findings, predictions, and conclusions described in this article are solely those of the authors, who confirm that the article has no conflicts of interest for publication in a suitable journal.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, M.F. (2022). Photon Application in the Design of Sustainable Buildings to Console Global Energy and Environment. In: Sustainable Design for Global Equilibrium. Springer, Cham. https://doi.org/10.1007/978-3-030-94818-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94818-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94817-7

  • Online ISBN: 978-3-030-94818-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics