Skip to main content

Implementation of Bose–Einstein (B–E) Photon Energy Reformation for Cooling and Heating the Building Naturally

  • Chapter
  • First Online:
Sustainable Design for Global Equilibrium
  • 129 Accesses

Abstract

Conventional heating and cooling systems consume fossil fuels and release toxic gases into the environment. Therefore, alternative sustainable systems for heating and air conditioning of premises are urgently demanded. For this purpose, photon particles can be decoded by invoking the Bose–Einstein photon distribution mechanism in a helium-assisted glazing wall. A building can be cooled by locally inducing the photonic bandgap state, which naturally cools the photons. This cooling-state photon, denoted as the Hossain Cooling Photon, HcP¯, can be transformed into a thermal-state photon, denoted as the Hossain Thermal Photon, HtP¯, through bremsstrahlung radiation emitted by quantum Higgs bosons (H → γγ¯). The resulting electromagnetic field can be generated by two-diode thermal semiconductors. Because the H → γγ¯ quantum field is initiated by an extremely short-range weak force, the electrically charged HcP¯ will be transformed into an HtP¯. The HcP¯ formation and HtP¯ transformation are demonstrated in a series of mathematical tests, confirming the feasibility of photon decoding in glazing walls as a natural cooling and heating mechanism for the premises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.K. Agger, A.H. Sørensen, Atomic and molecular structure and dynamics. Phys. Rev. A 55, 402–413 (1997)

    Article  Google Scholar 

  2. P. Arnold, G.D. Moore, L.G. Yaffe, Photon emission from ultrarelativistic plasmas. J. High Energy Phys. 11, 057 (2001)

    Article  Google Scholar 

  3. N. Artemyev, U.D. Jentschura, V.G. Serbo, A. Surzhykov, Strong electromagnetic field EFFECTS in ultra-relativistic heavy-ion collisions. Eur. Phys. J. 72, 1935 (2012)

    Article  Google Scholar 

  4. G. Baur, K. Hencken, D. Trautmann, S. Sadovsky, Y. Kharlov, Dense laser-driven electron sheets as relativistic mirrors for coherent production of brilliant X-ray and γ-ray beams. Phys. Rep. 364, 359–450 (2002)

    Article  Google Scholar 

  5. G. Baur, K. Hencken, D. Trautmann, Revisiting unitarity corrections for electromagnetic processes in collisions of relativistic nuclei. Phys. Rep. 453, 1–27 (2007)

    Article  Google Scholar 

  6. U. Becker, N. Grün, W. Scheid, K-shell ionisation in relativistic heavy-ion collisions. J. Phys. B: At. Mol. Phys. 20, 2075 (1987)

    Article  Google Scholar 

  7. A. Belkacem, H. Gould, B. Feinberg, R. Bossingham, W.E. Meyerhof, Semiclassical dynamics and relaxation. Phys. Rev. Lett. 71, 1514–1517 (1993)

    Article  Google Scholar 

  8. N.D. Benavides, P.L. Chapman, Modeling the effect of voltage ripple on the power output of photovoltaic modules. IEEE Trans. Ind. Electron. 55, 2638–2643 (2008)

    Article  Google Scholar 

  9. B. Boukhezzar, H. Siguerdidjane, Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization. Energy Convers. Manag. 50, 885–892 (2009)

    Article  Google Scholar 

  10. A.N. Celik, N. Acikgoz, Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models. Appl. Energy 84, 1–15 (2007)

    Article  Google Scholar 

  11. W. Chihhui, Metamaterial-based integrated plasmonic absorber/emitter for solar thermophotovoltaic systems. J. Opt. 14, 024005 (2012)

    Article  Google Scholar 

  12. W. De Soto, S.A. Klein, W.A. Beckman, Improvement and validation of a model for photovoltaic array performance. Sol. Energy 80, 78–88 (2006)

    Article  Google Scholar 

  13. J.S. Douglas, H. Habibian, C.-L. Hung, A.V. Gorshkov, H.J. Kimble, D.E. Chang, Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photonics 9, 326–331 (2015)

    Article  Google Scholar 

  14. J. Eichler, T. Stöhlker, Radiative electron capture in relativistic ion-atom collisions and the photoelectric effect in hydrogen-like high-Z systems. Phys. Rep. 439, 1–99 (2007)

    Article  Google Scholar 

  15. H. Faida, J. Saadi, Modelling, control strategy of DFIG in a wind energy system and feasibility study of a wind farm in Morocco. IREMOS 3, 1350–1362 (2010)

    Google Scholar 

  16. M. Faruque Hossain, Theory of global cooling. Energy Sustain. Soc. 6, 1–5, 24 (2016)

    Google Scholar 

  17. M. Faruque Hossain, Design and construction of ultra-relativistic collision PV panel and its application into building sector to mitigate total energy demand. J. Build. Eng. 9, 147–154 (2017a)

    Article  Google Scholar 

  18. M. Faruque Hossain, Green science: Advanced building design technology to mitigate energy and environment. Renew. Sustain. Energy Rev. 81, 3051–3060 (2017b)

    Article  Google Scholar 

  19. M. Faruque Hossain, Green science: Independent building technology to mitigate energy, environment, and climate change. Renew. Sustain. Energy Rev. 73, 695–705 (2017c)

    Article  Google Scholar 

  20. M. Faruque Hossain, Photonic thermal control to naturally cool and heat the building. Appl. Therm. Eng. 131, 576–586 (2018)

    Article  Google Scholar 

  21. T. Ghennam, E.M. Berkouk, B. Francois, A vector hysteresis current control applied on three-level inverter. Application to the active and reactive power control of doubly fed induction generator based wind turbine. Int. Rev. Electr. Eng. 2, 250–259 (2007)

    Google Scholar 

  22. C. Gopal, M. Mohanraj, P. Chandramohan, P. Chandrasekar, Renewable energy source water pumping systems—A literature review. Renew. Sustainable Energy Rev. 25, 351–370 (2013). https://doi.org/10.1016/j.rser.2013.04.012

    Article  Google Scholar 

  23. R.J. Gould, G.P. Schréder, Pair production in photon-photon collisions. Phys. Rev. 155, 1404–1407 (1967)

    Article  Google Scholar 

  24. M.C. Güçlü, J. Li, A.S. Umar, D.J. Ernst, M.R. Strayer, Electromagnetic lepton pair production in relativistic heavy-ion collisions. Ann. Phys. 272, 7–48 (1999)

    Article  Google Scholar 

  25. N. Gupta, S.P. Singh, S.P. Dubey, D.K. Palwalia, Fuzzy logic controlled three-phase three-wired shunt active power filter for power quality improvement. Int. Rev. Electr. Eng. 6, 1118–1129 (2011)

    Google Scholar 

  26. K. Hencken, G. Baur, D. Trautmann, Transverse momentum distribution of vector mesons produced in ultraperipheral relativistic heavy ion collisions. Phy. Rev. Lett. 96, 012303 (2006)

    Article  Google Scholar 

  27. F. Hossain, Solar energy integration into advanced building design for meeting energy demand and environment problem. Int. J. Energy Res. 17, 49–55 (2016)

    Google Scholar 

  28. S.C. Huot, Photon and dilepton production in supersymmetric Yang-Mills plasma. J. High Energy Phys. (2006). https://doi.org/10.1088/1126-6708/2006/12/015

  29. E. Kamal, M. Koutb, A.A. Sobaih, B. Abozalam, An intelligent maximum power extraction algorithm for hybrid wind-diesel-storage system. Int. J. Electr. Power Energy Syst. 32, 170–177 (2010)

    Article  Google Scholar 

  30. S.A. Klein, Calculation of flat-plate collector loss coefficients. Sol. Energy 17, 79–80 (1975)

    Article  Google Scholar 

  31. L. Langer, S.V. Poltavtsev, I.A. Yugova, M. Salewski, D.R. Yakovlev, G. Karczewski, T. Wojtowicz, I.A. Akimov, M. Bayer, Access to long-term optical memories using photon echoes retrieved from semiconductor spins. Nat. Photonics 8, 851–857 (2014)

    Article  Google Scholar 

  32. Q. Li, D.Z. Xu, C.Y. Cai, C.P. Sun, Recoil effects of a motional scatterer on single-photon scattering in one dimension. Sci. Rep. 3, 3144 (2013)

    Article  Google Scholar 

  33. B. Najjari, A.B. Voitkiv, A. Artemyev, A. Surzhykov, Simultaneous electron capture and bound-free pair production in relativistic collisions of heavy nuclei with atoms. Phys. Rev. A 80, 012701 (2009)

    Article  Google Scholar 

  34. J. Park, H. Kim, Y. Cho, C. Shin, Simple modeling and simulation of photovoltaic panels using Matlab/Simulink. Adv. Sci. Technol. Lett. 73, 147–155 (2014)

    Google Scholar 

  35. T. Pregnolato, E.H. Lee, J.D. Song, S. Stobbe, P. Lodahl, Single-photon non-linear optics with a quantum dot in a waveguide. Nat. Commun. 6, 8655 (2015)

    Article  Google Scholar 

  36. A. Reinhard, T. Volz, M. Winger, A. Badolato, K.J. Hennessy, E.L. Hu, A. Imamoğlu, Strongly correlated photons on a chip. Nat. Photonics 6, 93–96 (2012)

    Article  Google Scholar 

  37. B. Robyns, B. Francois, P. Degobert, J.P. Hautier, Vector Control of Induction Machines (Springer-Verlag, London, 2012)

    Book  MATH  Google Scholar 

  38. K.G. Sharma, A. Bhargava, K. Gajrani, Stability analysis of DFIG based wind turbines connected to electric grid. IREMOS 6, 879–887 (2013)

    Google Scholar 

  39. G. Sivasankar, V.S. Kumar, Improving low voltage ride through of wind generators using STATCOM under symmetric and asymmetric fault conditions. IREMOS 6, 1212–1218 (2013)

    Google Scholar 

  40. A. Soedibyo, F.A. Pamuji, M. Ashari, Grid quality hybrid power system control of microhydro, wind turbine and fuel cell using fuzzy logic. IREMOS 6, 1271–1278 (2013)

    Google Scholar 

  41. J.J. Soon, K.S. Low, Optimizing photovoltaic model parameters for simulation, in IEEE International Symposium on Industrial Electronics, (IEEE, Piscataway, NJ, 2012), pp. 1813–1818

    Google Scholar 

  42. A.H. Sørensen, The pairproduction channel in atomic processes. Radiat. Phys. Chem. 75, 656–695 (2006)

    Article  Google Scholar 

  43. R. Szafron, A. Czarnecki, High-energy electrons from the muon decay in orbit: Radiative corrections. Phys. Lett. B 753, 61–64 (2016)

    Article  Google Scholar 

  44. M.S. Tame, K.R. McEnery, Ş.K. Özdemir, J. Lee, S.A. Maier, M.S. Kim, Quantum plasmonics. Nat. Phys 9, 329–340 (2013)

    Article  Google Scholar 

  45. Y.T. Tan, D.S. Kirschen, N. Jenkins, A model of PV generation suitable for stability analysis. IEEE Trans. Energy Convers. 19, 748–755 (2004)

    Article  Google Scholar 

  46. M.W.Y. Tu, W.M. Zhang, Non-Markovian decoherence theory for a double-dot charge qubit. Phys. Rev. B 78, 235311 (2008)

    Article  Google Scholar 

  47. S.R. Valluri, U. Becker, N. Grün, W. Scheid, Relativistic collisions of highly-charged ions. J. Phys. B: At. Mol. Phys. 17, 4359–4370 (1984)

    Article  Google Scholar 

  48. W. Xiao, W.G. Dunford, A. Capal, A novel modeling method for photovoltaic cells, in 35th Annula IEEE Power Electronics Specialists Conference, Aachen, Germany, 2004, pp. 1950–1956

    Google Scholar 

  49. Y.F. Xiao, M. Li, Y.C. Liu, Y. Li, X. Sun, Q. Gong, Asymmetric Fano resonance analysis in indirectly coupled microresonators. Phys. Rev. A 82, 065804 (2010)

    Article  Google Scholar 

  50. W.B. Yan, H. Fan, Single-photon quantum router with multiple output ports. Sci. Rep. 4, 4820 (2014)

    Article  Google Scholar 

  51. L. Yang, S. Wang, Q. Zeng, Z. Zhang, T. Pei, Y. Li, L.M. Peng, Efficient photovoltage multiplication in carbon nanotubes. Nat. Photonics 5, 672–676 (2011)

    Article  Google Scholar 

  52. W.M. Zhang, P.Y. Lo, H.N. Xiong, M.W.Y. Tu, F. Nori, General non-Markovian dynamics of open quantum systems. Phys. Rev. Lett. 109, 170402 (2012)

    Article  Google Scholar 

  53. Y. Zhu, X. Hu, H. Yang, Q. Gong, On-chip plasmon-induced transparency based on plasmonic coupled nanocavities. Sci. Rep. 4, 3752 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Green Globe Technology under grant RD-02017-05 for building a better environment. Any findings, predictions, and conclusions described in this article are solely performed by the authors and it is confirmed that there is no conflict of interest for publishing this research paper in a suitable journal.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, M.F. (2022). Implementation of Bose–Einstein (B–E) Photon Energy Reformation for Cooling and Heating the Building Naturally. In: Sustainable Design for Global Equilibrium. Springer, Cham. https://doi.org/10.1007/978-3-030-94818-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94818-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94817-7

  • Online ISBN: 978-3-030-94818-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics