Skip to main content

Reconfiguration of Bose–Einstein Photonic Structure to Produce Clean Energy

  • Chapter
  • First Online:
Sustainable Design for Global Equilibrium
  • 131 Accesses

Abstract

The Bose–Einstein photonic structure has been deconstructed and modeled using the MATLAB software to design a Modern Solar Photovoltaics Energy Systems for trapping clean energy. Bose–Einstein photon distribution theory suggests that under low-temperature conditions, photonic bandgap state photons are induced locally and remain steady as long-lived equilibrium particles called discrete energy state photons. Thus, I assume that once a photon is in an extreme relativistic thermal condition, it will not obey Bose–Einstein discrete energy state theory. The photonic bandgap volume will be naturally increased within its vicinity as a result of the extreme relativistic thermal conditions, and the discrete energy state photon will be agitated by extreme relativistic thermal fluctuations. Consequently, the Bose–Einstein photonic dormant state will be broken down within its region and will create a multiple number of photons. Simply, a single discrete energy state photon will be transformed from the crossover phenomenon equilibrium state to a non-equilibrium state to exponentially create multiple photons, here named Hossain nonequilibrium photons (HnP). Calculations reveal that if only 0.00008% of a building’s exterior skin curtain wall is used as a Modern Solar Photovoltaics Energy panel to transform Bose–Einstein equilibrium photons into HnP, it will produce enough clean energy to satisfy the total energy demand of a building.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.K. Armani, T.J. Kippenberg, S.M. Spillane, K.J. Vahala, Ultra-high-Q toroid microcavity on a chip. Nature 421, 925 (2003)

    Article  Google Scholar 

  2. K.M. Birnbaum et al., Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005)

    Article  Google Scholar 

  3. K. Busch, G. von Freymann, S. Linden, S.F. Mingaleev, L. Tkeshelashvili, M. Wegener, Periodic nanostructures for photonics. Phys. Rep. 444, 101 (2007)

    Article  Google Scholar 

  4. D.E. Chang, A.S. Sørensen, E.A. Demler, M.D. Lukin, A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807–812 (2007)

    Article  Google Scholar 

  5. J. Chen, C. Wang, R. Zhang, J. Xiao, Multiple plasmon-induced transparencies in coupled-resonator systems. Opt. Lett. 37, 5133–5135 (2012)

    Article  Google Scholar 

  6. M.T. Cheng, Y.Y. Song, Fano resonance analysis in a pair of semiconductor quantum dots coupling to a metal nanowire. Opt. Lett. 37, 978–980 (2012)

    Article  Google Scholar 

  7. B. Dayan et al., A photon turnstile dynamically regulated by one atom. Science 319, 1062–1065 (2008)

    Article  Google Scholar 

  8. D. Englund et al., Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity. Phys. Rev. Lett. 104, 073904 (2010)

    Article  Google Scholar 

  9. S. Gleyzes et al., Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446, 297 (2007)

    Article  Google Scholar 

  10. C. Guerlin et al., Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 889 (2007)

    Article  Google Scholar 

  11. Z. Han, S.I. Bozhevolnyi, Plasmon-induced transparency with detuned ultracompact Fabry-Pérot resonators in integrated plasmonic devices. Opt. Express 19, 3251–3257 (2011)

    Article  Google Scholar 

  12. M.F. Hossain, Green science: Independent building technology to mitigate energy, environment, and climate change. Renew. Sustain. Energ. Rev. (2017a). https://doi.org/10.1016/j.rser.2017.01.136

  13. M.F. Hossain, Design and construction of ultra-relativistic collision PV panel and its application into building sector to mitigate total energy demand. J. Build. Eng. (2017b). https://doi.org/10.1016/j.jobe.2016.12.005

  14. M. Hossain, Faruque., Solar energy integration into advanced building design for meeting energy demand and environment problem. Int. J. Energy Res. (2016). https://doi.org/10.1002/er.3525

  15. J.F. Huang, T. Shi, C.P. Sun, F. Nori, Controlling single-photon transport in waveguides with finite cross section. Phys. Rev. A 88, 013836 (2013)

    Article  Google Scholar 

  16. J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Photonic crystals: Putting a new twist on light. Nature 386, 143 (1997)

    Article  Google Scholar 

  17. S. John, J. Wang, Quantum optics of localized light in a photonic band gap. Phys. Rev. B 43, 12772 (1991)

    Article  Google Scholar 

  18. A.G. Kofman, G. Kurizki, B. Sherman, Spontaneous and induced atomic decay in photonic band structures. J. Mod. Opt. 41, 353 (1994)

    Article  Google Scholar 

  19. P. Kolchin, R.F. Oulton, X. Zhang, Nonlinear quantum optics in a waveguide: Distinct single photons strongly interacting at the single atom level. Phys. Rev. Lett. 106, 113601 (2011)

    Article  Google Scholar 

  20. C. Lang et al., Observation of resonant photon blockade at microwave frequencies using correlation function measurements. Phys. Rev. Lett. 106, 243601 (2011)

    Article  Google Scholar 

  21. C.U. Lei, W.M. Zhang, A quantum photonic dissipative transport theory. Ann. Phys. 327, 1408 (2012)

    Article  MATH  Google Scholar 

  22. Q. Li, D.Z. Xu, C.Y. Cai, C.P. Sun, Recoil effects of a motional scatterer on single-photon scattering in one dimension. Sci. Rep. 3, 3144 (2013)

    Article  Google Scholar 

  23. J.Q. Liao, C.K. Law, Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity. Phys. Rev. A 82, 053836 (2010)

    Article  Google Scholar 

  24. J.Q. Liao, C.K. Law, Correlated two-photon scattering in cavity optomechanics. Phys. Rev. A 87, 043809 (2013)

    Article  Google Scholar 

  25. P.-Y. Lo, H.-N. Xiong, W.-M. Zhang, Breakdown of Bose-Einstein distribution in photonic crystals. Sci. Rep. 5, 9423 (2015)

    Article  Google Scholar 

  26. P. Longo, P. Schmitteckert, K. Busch, Few-photon transport in low-dimensional systems. Phys. Rev. A 83, 063828 (2011)

    Article  Google Scholar 

  27. X.-Y. Lü, W.-M. Zhang, S. Ashhab, Y. Wu, F. Nori, Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems. Sci. Rep. 3, 2943 (2013)

    Article  Google Scholar 

  28. G.D. Mahan, Many-Body Physics, 3rd edn. (Kluwer Academic/Plenum Publishers, New York, 2000)

    Google Scholar 

  29. C. Martens, P. Longo, K. Busch, Photon transport in one-dimensional systems coupled to three-level quantum impurities. N. J. Phys. (2013). https://doi.org/10.1063/1.4750125

  30. S. Noda, T. Baba, Roadmap on Photonic Crystals (Kluwer Academic Publishers Groups, Dordrecht, 2003)

    Book  Google Scholar 

  31. D. O’Shea, C. Junge, J. Volz, A. Rauschenbeutel, Fiber-optical switch controlled by a single atom. Phys. Rev. Lett. 111, 193601 (2013)

    Article  Google Scholar 

  32. A. Reinhard, Strongly correlated photons on a chip. Nat. Photonics 6, 93–96 (2012)

    Article  Google Scholar 

  33. D. Roy, Two-photon scattering of a tightly focused weak light beam from a small atomic ensemble: An optical probe to detect atomic level structures. Phys. Rev. A 87, 063819 (2013)

    Article  Google Scholar 

  34. E. Saloux, Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point. Sol. Energy 85, 713–722 (2011)

    Article  Google Scholar 

  35. C. Sayrin et al., Real-time quantum feedback prepares and stabilizes photon number states. Nature 477, 73 (2011)

    Article  Google Scholar 

  36. J.T. Shen, S. Fan, Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system. Phys. Rev. Lett. 98, 153003 (2007)

    Article  Google Scholar 

  37. T. Shi, S. Fan, C.P. Sun, Two-photon transport in a waveguide coupled to a cavity in a two-level system. Phys. Rev. A 84, 063803 (2011)

    Article  Google Scholar 

  38. S. Sreekumar, A. Benny, Maximum power point tracking of photovoltaic system using Fuzzy Logic Controller based boost converter, in 2013 International Conference on Current Trends in Engineering and Technology (ICCTET), 2013

    Google Scholar 

  39. M.S. Tame, K.R. McEnery, Ş.K. Özdemir, J. Lee, S.A. Maier, M.S. Kim, Quantum plasmonics. Nat. Phys. 9, 329–340 (2013)

    Article  Google Scholar 

  40. M.W.Y. Tu, W.M. Zhang, Non-Markovian decoherence theory for a double-dot charge qubit. Phys. Rev. B 78, 235311 (2008)

    Article  Google Scholar 

  41. M.W.-Y. Tu, W.-M. Zhang, J. Jin, O. Entin-Wohlman, A. Aharony, Transient quantum transport in double-dot Aharonov-Bohm interferometers. Phys. Rev. B 86, 115453 (2012)

    Article  Google Scholar 

  42. X.H. Wang, B.Y. Gu, R. Wang, H.Q. Xu, Decay kinetic properties of atoms in photonic crystals with absolute gaps. Phys. Rev. Lett. 91, 113904 (2003)

    Article  Google Scholar 

  43. Y.F. Xiao et al., Asymmetric Fano resonance analysis in indirectly coupled microresonators. Phys. Rev. A 82, 065804 (2010)

    Article  Google Scholar 

  44. W.-B. Yan, H. Fan, Single-photon quantum router with multiple output ports. Sci. Rep. 4, 4820 (2014)

    Article  Google Scholar 

  45. W.-B. Yan, J.-F. Huang, H. Fan, Tunable single-photon frequency conversion in a Sagnac interferometer. Sci. Rep. 3, 3555 (2013)

    Article  Google Scholar 

  46. Z. Yu, X. Hu, H. Yang, Q. Gong, On-chip plasmon-induced transparency based on plasmonic coupled nanos cavities. Sci. Rep. 4, 3752 (2014)

    Google Scholar 

  47. W.M. Zhang, P.Y. Lo, H.N. Xiong, M.W.Y. Tu, F. Nori, General non-Markovian dynamics of open quantum systems. Phys. Rev. Lett. 109, 170402 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Green Globe Technology under grant RD-02017-03. Any findings, predictions, and conclusions described in this article are solely those of the author. The author confirms that he has no conflicts of interest.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, M.F. (2022). Reconfiguration of Bose–Einstein Photonic Structure to Produce Clean Energy. In: Sustainable Design for Global Equilibrium. Springer, Cham. https://doi.org/10.1007/978-3-030-94818-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94818-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94817-7

  • Online ISBN: 978-3-030-94818-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics