Skip to main content

Modeling of Climate Control to Secure Global Environmental Equilibrium

  • Chapter
  • First Online:
Sustainable Design for Global Equilibrium
  • 126 Accesses

Abstract

A natural mechanism is being proposed to control global climate change in order to leave all living being in a steady comfort temperature condition throughout the seasons. To achieve this, photon particle has been remodeled by implementing Bose–Einstein (B–E) dormant photonic dynamics of the earth surface plane. Simply, the proposed decoded B–E photons will be induced by the photonic bandgap of earth surface to convert the solar photons into cooling-state photons here named as the Hossain Cooling Photon (HcP¯) which eventually will cool the earth surface. Interestingly, this HcP¯ could an also be converted into the thermo-state photons, named as the Hossain Thermal Photon (HtP¯) by implementing Higgs bosons (H → γγ) electromagnetic quantum fields utilized by earth’s electromagnetic force. Because H → γγ¯ quantum field of earth surface plane has the extreme small length weak force which will enforce the electrically charged HcP¯ quantum to get voracious to convert it into HtP¯ in order to heat the earth surface naturally. The formation of HcP¯ from the photon particles and then the conversion of HcP¯ to HtP¯ has being proved by a set of mathematical tests in this research which reveals the feasibility of the deformed photons (HcP¯ and HtP¯) are actively doable into the earth surface to cool and heat the Earth naturally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.K. Agger, A.H. Sørensen, Atomic and molecular structure and dynamics. Phys. Rev. A 55, 402–413 (1997)

    Article  Google Scholar 

  2. G. Baur, K. Hencken, D. Trautmann, S. Sadovsky, Y. Kharlov, Dense laser-driven electron sheets as relativistic mirrors for coherent production of brilliant X-ray and γ-ray beams. Phys. Rep. 364, 359–450 (2002)

    Article  Google Scholar 

  3. G. Baur, K. Hencken, D. Trautmann, Revisiting unitarity corrections for electromagnetic processes in collisions of relativistic nuclei. Phys. Rep. 453, 1–27 (2007)

    Article  Google Scholar 

  4. U. Becker, N. Grün, W. Scheid, K-shell ionisation in relativistic heavy-ion collisions. J. Phys. B: At. Mol. Phys. 20, 2075 (1987)

    Article  Google Scholar 

  5. A. Belkacem, H. Gould, B. Feinberg, R. Bossingham, W.E. Meyerhof, Semiclassical dynamics and relaxation. Phys. Rev. Lett. 71, 1514–1517 (1993)

    Article  Google Scholar 

  6. N.D. Benavides, P.L. Chapman, Modeling the effect of voltage ripple on the power output of photovoltaic modules. IEEE Trans. Ind. Electron. 55, 2638–2643 (2008)

    Article  Google Scholar 

  7. B. Boukhezzar, H. Siguerdidjane, Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization. Energy Convers. Manag. 50, 885–892 (2009)

    Article  Google Scholar 

  8. V. Cardoso, Quasinormal modes of Schwarzschild black holes in four and higher dimensions. Phys. Rev. D 69, 044004 (2004)

    Article  MathSciNet  Google Scholar 

  9. A.N. Celik, N. Acikgoz, Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models. Appl. Energy 84, 1–15 (2007)

    Article  Google Scholar 

  10. W. Chihhui, Metamaterial-based integrated plasmonic absorber/emitter for solar thermophotovoltaic systems. J. Opt. 14, 024005 (2012)

    Article  Google Scholar 

  11. W. De Soto, S.A. Klein, W.A. Beckman, Improvement and validation of a model for photovoltaic array performance. Sol. Energy 80, 78–88 (2006)

    Article  Google Scholar 

  12. J.S. Douglas, H. Habibian, C.-L. Hung, A.V. Gorshkov, H.J. Kimble, D.E. Chang, Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photonics 9, 326–331 (2015)

    Article  Google Scholar 

  13. J. Eichler, T. Stöhlker, Radiative electron capture in relativistic ion-atom collisions and the photoelectric effect in hydrogen-like high-Z systems. Phys. Rep. 439, 1–99 (2007)

    Article  Google Scholar 

  14. H. Faida, J. Saadi, Modelling, control strategy of DFIG in a wind energy system and feasibility study of a wind farm in Morocco. IREMOS 3, 1350–1362 (2010)

    Google Scholar 

  15. T. Ghennam, E.M. Berkouk, B. Francois, A vector hysteresis current control applied on three-level inverter. Application to the active and reactive power control of doubly fed induction generator based wind turbine. IREE 2, 250–259 (2007)

    Google Scholar 

  16. C. Gopal, M. Mohanraj, P. Chandramohan, P. Chandrasekar, Renewable energy source water pumping systems—a literature review. Renew. Sustain. Energy Rev. 25, 351–370 (2013). https://doi.org/10.1016/j.rser.2013.04.012

    Article  Google Scholar 

  17. M.C. Güçlü, J. Li, A.S. Umar, D.J. Ernst, M.R. Strayer, Electromagnetic lepton pair production in relativistic heavy-ion collisions. Ann. Phys. 272, 7–48 (1999)

    Article  Google Scholar 

  18. N. Gupta, S.P. Singh, S.P. Dubey, D.K. Palwalia, Fuzzy logic controlled three-phase three-wired shunt active power filter for power quality improvement. IREE 6, 1118–1129 (2011)

    Google Scholar 

  19. M.F. Hossain, Solar energy integration into advanced building design for meeting energy demand. Int. J. Energy Res. 40, 1293–1300 (2016a)

    Article  Google Scholar 

  20. M.F. Hossain, Production of clean energy from cyanobacterial biochemical products. Strat. Plan. Energy Environ. 3, 6–23 (2016b)

    Google Scholar 

  21. M.F. Hossain, Theory of global cooling. Energy Sustain. Soc. 6(1–5), 24 (2016c)

    Article  Google Scholar 

  22. M.F. Hossain, Green science: Advanced building design technology to mitigate energy and environment. Renew. Sustai. Energy Rev. 81, 30513060 (2017a)

    Article  Google Scholar 

  23. M.F. Hossain, Design and construction of ultra-relativistic collision PV panel and its application into building sector to mitigate total energy demand. J. Build. Eng. 9, 147154 (2017b)

    Article  Google Scholar 

  24. M.F. Hossain, Invisible transportation infrastructure technology to mitigate energy and environment. Energy Sustain. Soc. 7, 27 (2017c)

    Article  Google Scholar 

  25. M.F. Hossain, Green science: Independent building technology to mitigate energy, environment, and climate change. Renew. Sustain. Energy Rev. 73, 695705 (2017d)

    Article  Google Scholar 

  26. M.F. Hossain, Application of advanced technology to build a vibrant environment on planet mars. Int. J. Environ. Sci. Technol. 14(12), 2709–2720 (2017e)

    Article  Google Scholar 

  27. M.F. Hossain, Sustainable Design and Build (Elsevier, Amsterdam, 2018a), p. 468. ISBN: 9780128167229

    Google Scholar 

  28. M.F. Hossain, Green science: Advanced building design technology to mitigate energy and environment. Renew. Sustain. Energy Rev. 81(2), 3051–3060 (2018b)

    Article  MathSciNet  Google Scholar 

  29. M.F. Hossain, Photonic thermal energy control to naturally cool and heat the building. Appl. Therm. Eng. 131, 576–586 (2018c)

    Article  Google Scholar 

  30. M.F. Hossain, Green science: Decoding dark photon structure to produce clean energy. Energy Rep. 4, 41–48 (2018d)

    Article  Google Scholar 

  31. M.F. Hossain, Photon application in the design of sustainable buildings to console global energy and environment. Appl. Therm. Eng. 141, 579–588 (2018e)

    Article  Google Scholar 

  32. M.F. Hossain, Transformation of dark photon into sustainable energy. Int. J. Energy Environ. Eng. 9, 99–110 (2018f)

    Article  Google Scholar 

  33. M.F. Hossain, Bose-Einstein (B-E) photonic energy structure reformation for cooling and heating the premises naturally. Adv. Therm. Eng. 142, 100–109 (2018g)

    Article  Google Scholar 

  34. M.F. Hossain, Global environmental vulnerability and the survival period of all living beings on earth. Int. J. Environ. Sci. Technol. (2018h). https://doi.org/10.1007/s13762-018-1722-y

  35. M.F. Hossain, Photon energy amplification for the design of a micro PV panel. Int. J. Energy Res. (2018i). https://doi.org/10.1002/er.4118

  36. M.F. Hossain, N. Fara, Integration of wind into running vehicles to meet its total energy demand. Energy Ecol. Environ. 2(1), 35–48 (2016)

    Article  Google Scholar 

  37. S.C. Huot, Photon and dilepton production in supersymmetric Yang-Mills plasma. J. High Energy Phys. (2006). https://doi.org/10.1088/1126-6708/2006/12/015

  38. E. Kamal, M. Koutb, A.A. Sobaih, B. Abozalam, An intelligent maximum power extraction algorithm for hybrid wind-diesel-storage system. Int. J. Electr. Power Energy Syst. 32, 170–177 (2010)

    Article  Google Scholar 

  39. M. Laine, Thermal 2-loop master spectral function at finite momentum. J. High Energy Phys. (2013). https://doi.org/10.1007/JHEP05%282013%29083

  40. L. Langer, S.V. Poltavtsev, I.A. Yugova, M. Salewski, D.R. Yakovlev, G. Karczewski, T. Wojtowicz, I.A. Akimov, M. Bayer, Access to long-term optical memories using photon echoes retrieved from semiconductor spins. Nat. Photonics 8, 851–857 (2014)

    Article  Google Scholar 

  41. Q. Li, D.Z. Xu, C.Y. Cai, C.P. Sun, Recoil effects of a motional scatterer on single-photon scattering in one dimension. Sci. Rep. 3, 3144 (2013)

    Article  Google Scholar 

  42. F. Martin, Single photon-induced symmetry breaking of H2 dissociation. Science 315, 629 (2007)

    Article  Google Scholar 

  43. B. Najjari, A.B. Voitkiv, A. Artemyev, A. Surzhykov, Simultaneous electron capture and bound-free pair production in relativistic collisions of heavy nuclei with atoms. Phys. Rev. A 80, 012701 (2009)

    Article  Google Scholar 

  44. J. Park, H. Kim, Y. Cho, C. Shin, Simple modeling and simulation of photovoltaic panels using Matlab/simulink. Adv. Sci. Technol. Lett. 73, 147–155 (2014)

    Google Scholar 

  45. T. Pregnolato, E.H. Lee, J.D. Song, S. Stobbe, P. Lodahl, Single-photon non-linear optics with a quantum dot in a waveguide. Nat. Commun. 6, 8655 (2015)

    Article  Google Scholar 

  46. A. Reinhard, T. Volz, M. Winger, A. Badolato, K.J. Hennessy, E.L. Hu, A. Imamoğlu, Strongly correlated photons on a chip. Nat. Photonics 6, 93–96 (2012)

    Article  Google Scholar 

  47. B. Robyns, B. Francois, P. Degobert, J.P. Hautier, Vector Control of Induction Machines (Springer-Verlag, London, 2012)

    Book  MATH  Google Scholar 

  48. K.G. Sharma, A. Bhargava, K. Gajrani, Stability analysis of DFIG based wind turbines connected to electric grid. IREMOS 6, 879–887 (2013)

    Google Scholar 

  49. G. Sivasankar, V.S. Kumar, Improving low voltage ride through of wind generators using STATCOM under symmetric and asymmetric fault conditions. IREMOS 6, 1212–1218 (2013)

    Google Scholar 

  50. A. Soedibyo, F.A. Pamuji, M. Ashari, Grid quality hybrid power system control of microhydro, wind turbine and fuel cell using fuzzy logic. IREMOS 6, 1271–1278 (2013)

    Google Scholar 

  51. J.J. Soon, K.S. Low, Optimizing photovoltaic model parameters for simulation, in IEEE International Symposium on Industrial Electronics (2012), pp. 1813–1818.

    Google Scholar 

  52. R. Szafron, A. Czarnecki, High-energy electrons from the muon decay in orbit: Radiative corrections. Phys. Lett. B 753, 61–64 (2016)

    Article  Google Scholar 

  53. M.S. Tame, K.R. McEnery, Ş.K. Özdemir, J. Lee, S.A. Maier, M.S. Kim, Quantum plasmonics. Nat. Phys. 9, 329–340 (2013)

    Article  Google Scholar 

  54. Y.T. Tan, D.S. Kirschen, N. Jenkins, A model of PV generation suitable for stability analysis. IEEE Trans. Energy Convers. 19, 748–755 (2004)

    Article  Google Scholar 

  55. M.W.Y. Tu, W.M. Zhang, Non-Markovian decoherence theory for a double-dot charge qubit. Phys. Rev. B 78, 235311 (2008)

    Article  Google Scholar 

  56. G. Wang, K. Zhao, J. Shi, W. Chen, H. Zhang, X. Yang, Y. Zhao, An iterative approach for modeling photovoltaic modules without implicit equations. Appl. Energy 202, 189–198 (2017)

    Article  Google Scholar 

  57. Y.F. Xiao, M. Li, Y.C. Liu, Y. Li, X. Sun, Q. Gong, Asymmetric Fano resonance analysis in indirectly coupled microresonators. Phys. Rev. A 82, 065804 (2010)

    Article  Google Scholar 

  58. W.B. Yan, H. Fan, Single-photon quantum router with multiple output ports. Sci. Rep. 4, 4820 (2014)

    Article  Google Scholar 

  59. L. Yang, S. Wang, Q. Zeng, Z. Zhang, T. Pei, Y. Li, L.M. Peng, Efficient photovoltage multiplication in carbon nanotubes. Nat. Photonics 5, 672–676 (2011)

    Article  Google Scholar 

  60. W.M. Zhang, P.Y. Lo, H.N. Xiong, M.W.Y. Tu, F. Nori, General non-Markovian dynamics, in A Novel Modeling Method for Photovoltaic Cells, 35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany, ed. by W. Xiao, W. G. Dunford, A. Capal, (IEEE, Piscataway, 2004), pp. 1950–1956

    Google Scholar 

  61. Y. Zhu, X. Hu, H. Yang, Q. Gong, On-chip plasmon-induced transparency based on plasmonic coupled nanocavities. Sci. Rep. 4, 3752 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, M.F. (2022). Modeling of Climate Control to Secure Global Environmental Equilibrium. In: Sustainable Design for Global Equilibrium. Springer, Cham. https://doi.org/10.1007/978-3-030-94818-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94818-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94817-7

  • Online ISBN: 978-3-030-94818-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics