Skip to main content

Insight into the Stability Analysis of the Reaction-Diffusion Equation Interconnected with a Finite-Dimensional System Taking Support on Legendre Orthogonal Basis

  • Chapter
  • First Online:
  • 355 Accesses

Part of the book series: Advances in Delays and Dynamics ((ADVSDD,volume 14))

Abstract

This chapter deals with the stability analysis of the reaction-diffusion subject to dynamic boundary conditions. More particularly, the objective is to propose a linear matrix inequality criterion which ensures the stability of such infinite-dimensional system. By the use of Fourier-Legendre series, the Lyapunov functional is split into an augmented finite-dimensional state including within it the first Fourier-Legendre coefficients and the residual part. A link between this modeling and Padé approximation is briefly highlighted. Then, from Bessel and Wirtinger inequalities applied to the Fourier-Legendre remainder and using its orthogonality properties, a sufficient condition of stability expressed in terms of linear matrix inequalities is obtained. This efficient and scalable stability condition is finally performed on examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aarsnes, U., Vazquez, R., Di Meglio, F., Krstic, M.: Delay robust control design of under-actuated PDE-ODE-PDE systems. In: 2019 American Control Conference (ACC), pp. 3200–3205. IEEE (2019)

    Google Scholar 

  2. Bajodek, M., Seuret, A., Gouaisbaut, F.: Insight into stability analysis of time-delay systems using legendre polynomials. IFAC-PapersOnLine 53(2), 4816–4821 (2020). 21st IFAC World Congress

    Google Scholar 

  3. Bajodek, M., Seuret, A., Gouaisbaut, F.: Stability analysis of an ordinary differential equation interconnected with the reaction-diffusion equation. Submitted (2021)

    Google Scholar 

  4. Baker, G., Graves-Morris, P.: Padé Approximants, 2nd edn. Encyclopedia of Mathematics and its Applications \(n^{\circ }59\) (1996)

    Google Scholar 

  5. Barreau, M., Seuret, A., Gouaisbaut, F., Baudouin, L.: Lyapunov stability analysis of a string equation coupled with an ordinary differential system. IEEE Trans. Autom. Control 63(11), 3850–3857 (2018)

    Article  MathSciNet  Google Scholar 

  6. Baudouin, L., Seuret, A., Gouaisbaut, F.: Stability analysis of a system coupled to a heat equation. Automatica 195–202 (2019)

    Google Scholar 

  7. Curtain, R., Morris, K.: Transfer functions of distributed parameter systems: a tutorial. Automatica 45(5), 1101–1116 (2009)

    Article  MathSciNet  Google Scholar 

  8. Curtain, R., Zwart, H.: An Introduction to Infinite-Dimensional Linear Systems Theory. Springer (1995)

    Google Scholar 

  9. Das, A., Shivakumar, S., Peet, M., Weiland, S.: Robust analysis of uncertain ODE-PDE systems using PI multipliers, PIEs and LPIs. In: 2020 59th IEEE Conference on Decision and Control (CDC), pp. 634–639. IEEE (2020)

    Google Scholar 

  10. Das, A., Shivakumar, S., Weiland, S., Peet, M.: Representation and stability analysis of PDE-ODE coupled systems (2018). ArXiv:1812.07186

  11. Evans, L.: Partial Differential Equations. American Mathematical Society (1997)

    Google Scholar 

  12. Gautschi, W.: Orthogonal polynomials, quadrature, and approximation: computational methods and software (in Matlab). Lect. Notes Math. 1883, 1–77 (2006)

    Article  MathSciNet  Google Scholar 

  13. Gottlieb, D., Orszag, S.: Numerical analysis of spectral methods. Society for Industrial and Applied Mathematics, Philadelphia (1977)

    Google Scholar 

  14. Ito, K., Teglas, R.: Legendre-Tau approximations for functional differential equations. SIAM J. Control Optim. 24(4), 737–759 (1986)

    Article  MathSciNet  Google Scholar 

  15. Kammler, W.: A first course in Fourier analysis. Cambridge University Press (2007)

    Google Scholar 

  16. Karafyllis, I., Krstic, M.: Input-to-State Stability for PDEs. Springer (2018)

    Google Scholar 

  17. Krstic, M.: Delay Compensation for Nonlinear, Adaptive, and PDE Systems. Springer (2009)

    Google Scholar 

  18. Lasieka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories. Cambridge University Press (2000)

    Google Scholar 

  19. Lhachemi, H., Shorten, R.: Boundary feedback stabilization of a reaction-diffusion equation with Robin boundary conditions and state-delay. Automatica 116, 108931 (2020)

    Google Scholar 

  20. Logemann, H.: Circle criteria, small-gain conditions and internal stability for infinite-dimensional systems. Automatica 27(4), 677–690 (1991)

    Article  MathSciNet  Google Scholar 

  21. Mironchenko, A., Prieur, C.: Input-to-state stability of infinite-dimensional systems: recent results and open questions. SIAM Rev., Soc. Ind. Appl. Math. 62(3), 529–614 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Prieur, C., Girard, A., Witrant, E.: Stability of switched linear hyperbolic systems by Lyapunov techniques. IEEE Trans. Autom. Control 59(8), 2196–2202 (2014)

    Article  MathSciNet  Google Scholar 

  23. Prieur, C., Trelat, E.: Feedback stabilization of a 1-D linear reaction-diffusion equation with delay boundary control. IEEE Trans. Autom. Control 64(4), 1415–1425 (2019)

    Article  MathSciNet  Google Scholar 

  24. Safi, M., Baudouin, L., Seuret, A.: Tractable sufficient stability conditions for a system coupling linear transport and differential equations. Syst. Control Lett. 110, 1–8 (2017)

    Article  MathSciNet  Google Scholar 

  25. Selivanov, A., Fridman, F.: Boundary observers for a reaction-diffusion system under time-delayed and sampled-data measurements. IEEE Trans. Autom. Control 64(8), 3385–3390 (2019)

    Article  MathSciNet  Google Scholar 

  26. Valmorbida, G., Ahmadi, M., Papachristodoulou, A.: Stability analysis for a class of partial differential equations via semidefinite programming. IEEE Trans. Autom. Control 61(6), 1649–1654 (2016)

    Article  MathSciNet  Google Scholar 

  27. Wang, Z., Zhang, H., Li, P.: An LMI approach to stability analysis of reaction-diffusion Cohen-Grossberg neural networks concerning Dirichlet boundary conditions and distributed delays. IEEE Trans. Syst. Man Cybern. 40(6), 1596–1606 (2010)

    Article  Google Scholar 

  28. Webb, M., Coppé, V., Huybrechs, D.: Pointwise and uniform convergence of Fourier extensions. Constr. Approx. 52, 139–175 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Bajodek .

Editor information

Editors and Affiliations

Appendix

Appendix

Derived from the matrix inversion and determinant lemmas, a usefull lemma can also be formulated.

Lemma 7

For any \(u\in \mathbb {R}^n\) with a non-zero first component, \(v\in \mathbb {R}^n\) not equal to the zero vector and \(L\in \mathbb {R}^{n\times n}\) a strictly lower triangular matrix with non-zero under diagonal coefficients (i.e. \(L_{i+1,i}\ne 0\;\forall i\in \{1,\dots n-1\}\)), one obtains

$$\begin{aligned} 1-v^T((s-\lambda )I_n+L+uv^T)^{-1}u=\underset{s\rightarrow \lambda }{O}{(s^n)}. \end{aligned}$$
(40)

Proof

The matrix inversion lemma applied to vectors \(u\in \mathbb {R}^n\), \(v\in \mathbb {R}^n\) and non singular matrix \(M=sI_n+L\in \mathbb {R}^{n\times n}\) gives, for any \(s\in \mathbb {C}\backslash \{0\}\),

$$\begin{aligned} 1-v^T((s-\lambda )I_n+L+uv^T)^{-1}u = (1+v^T((s-\lambda )I_n+L)^{-1}u)^{-1}, \end{aligned}$$

and the matrix determinant lemma leads to

$$\begin{aligned} 1-v^T((s-\lambda )I_n+L+uv^T)^{-1}u&= \frac{\mathrm {det}((s-\lambda )I_n+L)}{\mathrm {det}((s-\lambda )I_n+L+uv^T)}. \end{aligned}$$

Then, since L is strictly lower triangular, we have

$$\begin{aligned} \mathrm {det}((s-\lambda )I_n+L) = \mathrm {det}((s-\lambda )I_n) = (s-\lambda )^n. \end{aligned}$$

and, because L has non-zero under diagonal coefficients and under the hypothesis done on vectors u, v, matrix \(L+uv^T\) has full rank which means \(\mathrm {det}(L+uv^T)\ne 0\). That yields the result for s tending to \(\lambda \).

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bajodek, M., Seuret, A., Gouaisbaut, F. (2022). Insight into the Stability Analysis of the Reaction-Diffusion Equation Interconnected with a Finite-Dimensional System Taking Support on Legendre Orthogonal Basis. In: Auriol, J., Deutscher, J., Mazanti, G., Valmorbida, G. (eds) Advances in Distributed Parameter Systems. Advances in Delays and Dynamics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-94766-8_5

Download citation

Publish with us

Policies and ethics