Skip to main content

Numerical Control of a Semilinear Wave Equation on an Interval

  • Chapter
  • First Online:
Advances in Distributed Parameter Systems

Part of the book series: Advances in Delays and Dynamics ((ADVSDD,volume 14))

Abstract

We are concerned with the numerical exact controllability of the semilinear wave equation on the interval (0, 1). We introduce a Picard iterative scheme yielding a sequence of approximated solutions which converges towards a solution of the null controllability problem, provided that the initial data are small enough. The boundary control, which is applied at the endpoint \(x=1\), is taken in the space \(H^1_0(0,T)\) for \(T=2\). For the linear part, the control input is obtained by imposing a transparent boundary condition at \(x=1\). Next, we provide several simulations to show the efficiency of the algorithm, using collocation pseudospectral methods on Chebychev grids to discretize the second order derivative in space in the wave equation.

The authors are partially supported by CAPES: \(\text {n}^\text {o}\) 88881.520205/2020-01 and MATH AMSUD: 21-MATH-03.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abolinya, V.È., Myshkis, A.D.: Mixed problems for quasi-linear hyperbolic systems in the plane. (Russian) Mat. Sb. (N.S.) 50(92), 423–442 (1960)

    Google Scholar 

  2. Alabau-Boussouira, F., Perrollaz, V., Rosier, L.: Finite-time stabilization of a network of strings. Math. Control Relat. Fields 5(4), 721–742 (2015)

    Article  MathSciNet  Google Scholar 

  3. Asch, M., Lebeau, G.: Geometrical aspects of exact boundary controllability for the wave equation- a numerical study. ESAIM: COCV 3, 163–212 (1998)

    Google Scholar 

  4. Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992)

    Article  MathSciNet  Google Scholar 

  5. Bastin, G., Coron, J.-M.: Stability and Boundary Stabilization of 1-D Hyperbolic Systems. In: Progress in Nonlinear Differential Equations and their Applications, 88. Subseries in Control, Birkhaüser/Springer (2016)

    Google Scholar 

  6. Cavalcanti, M.M., Corrêa, W.J., Rosier, C., Dias Silva, F.R.: General decay rate estimates and numerical analysis for a transmission problem with locally distributed nonlinear damping. Comput. Math. Appl. 73(10), 2293–2318 (2017)

    Article  MathSciNet  Google Scholar 

  7. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods in Fluid Dynamics, Springer Series in Computational Physics, Springer Berlin Heidelberg (1988)

    Google Scholar 

  8. Castro, C., Micu, S.: Boundary controllability of a linear semi-discrete 1-D wave equation derived from a mixed finite element method. Numer. Math. 102(3), 413–462 (2006)

    Article  MathSciNet  Google Scholar 

  9. Castro, C., Micu, S., Münch, A.: Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square. IMA J. Numer. Anal. 28(1), 186–214 (2008)

    Article  MathSciNet  Google Scholar 

  10. Cooke, K.L., Krumme, D.W.: Differential-difference equations and nonlinear initial-boundary value problems for linear hyperbolic partial differential equations. J. Math. Anal. Appl. 24, 372–387 (1968)

    Article  MathSciNet  Google Scholar 

  11. Domingos Cavalcanti, V.N., Rodrigues, J.H., Rosier, C.: Numerical analysis for the wave equation with locally nonlinear distributed damping. J. Comput. Appl. Math. 301, 144–160 (2016)

    Article  MathSciNet  Google Scholar 

  12. Ervedoza, S., Zuazua, E.: A systematic method for building smooth controls for smooth data. Discrete Contin. Dyn. Syst., Ser. B 14(4), 1375–1401 (2010)

    Google Scholar 

  13. Ervedoza, S., Zuazua, E.: Numerical approximation of exact controls for waves. Springer Briefs in Mathematics. Springer, New York (2013)

    Google Scholar 

  14. Glowinski, R., Li, C., Lions, J.L.: A numerical approach to the exact boundary controllability of the wave equation. Japan J. Appl. Math. 3, 1–76 (1990)

    Article  Google Scholar 

  15. Gugat, M., Perrollaz, V., Rosier, L.: Boundary stabilization of quasilinear hyperbolic systems of balance laws: exponential decay for small source terms. J. Evol. Equ. 18(3), 1471–1500 (2018)

    Article  MathSciNet  Google Scholar 

  16. Ignat, L., Zuazua, E.: Convergence of a multi-grid method for the control of waves. J. Eur. Math. Soc. 11, 351–391 (2009)

    Article  Google Scholar 

  17. Komornik, V.: Exact Controllability and Stabilization. Research in Applied Mathematics, Masson, Paris, The Multiplier Method. RAM (1994)

    Google Scholar 

  18. Leugering, G., Schmidt, E.J.P.G.: On the modelling and stabilization of flows in networks of open canals. SIAM J. Control Optim. 41, 164–180 (2002)

    Article  MathSciNet  Google Scholar 

  19. Majda, A.: Disappearing solutions for the dissipative wave equation. Indiana Univ. Math. J. 24, 1119–1133 (1975)

    Article  MathSciNet  Google Scholar 

  20. Micu, S.: Uniform boundary controllability of a semidiscrete 1-D wave equation with vanishing viscosity. SIAM J. Control Optim. 47(6), 2857–2885 (2008)

    Article  MathSciNet  Google Scholar 

  21. Münch, A.: A uniformly controllable and implicit scheme for the 1-D wave equation, M2AN Math. Model. Numer. Anl. 39(2), 377–418 (2005)

    Article  Google Scholar 

  22. Pedregal, P., Periago, F., Villena, J.: A numerical method of local energy decay for the boundary controllability of time-reversible distributed parameter systems. Stud. Appl. Math. 121(1), 27–47 (2008)

    Article  MathSciNet  Google Scholar 

  23. Perrollaz, V., Rosier, L.: Finite-time stabilization of \(2\times 2\) hyperbolic systems on tree-shaped networks. SIAM J. Control Optim. 52(1), 143–163 (2014)

    Article  MathSciNet  Google Scholar 

  24. Russell, D.L.: Controllability and stabilization theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20(4), 639–737 (1978)

    Article  MathSciNet  Google Scholar 

  25. Trefethen, L.N.: Spectral Methods in Matlab, SIAM Philadelphia (2000)

    Google Scholar 

  26. Zuazua, E.: Boundary observability for the finite difference space semi-discretizations of the 2-D wave equation in the square. J. Math. Pures Appl. 78, 523–563 (1999)

    Article  MathSciNet  Google Scholar 

  27. Zuazua, E.: Propagation, observation, control and numerical approximation of waves. SIAM Rev. 47(2), 197–243 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Cavalcanti .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Proof of Lemma 1

The estimate for \(h\equiv 0\) follows from classical semigroup theory, \(\big ( S(t) \big )_{t\in {\mathbb R}}\) being a unitary group on \(\mathcal H_0\). Assume now that \(h\ne 0\) and that \((z^0,z^1,g)=(0,0,0)\). Since \(||(z ,\tilde{z})||_\mathcal H\) and \(||z||_{H^1_x} + ||\tilde{z}||_{L^2_x}\) are equivalent norms on \(\mathcal H\), it is sufficient to prove

$$ ||z||_{ C ([0,T],H^1_x) } + || z_t ||_{ C( [0,T],L^2_x)} \le C || h ||_{H^1_t}. $$

(Here, C denotes some constant that may vary from line to line.) It is well-known that

$$\begin{aligned} ||z||_{C([0,T],L^2_x)} +||z_t ||_{C([0,T],H^{-1}_x)} \le C \left( ||z^0||_{L^2_x} + ||z^1||_{H^{-1}_x} +||h||_{L^2_t} \right) \end{aligned}$$
(81)

where z denotes the solution by transposition of (39)–(41) with \((z^0,z^1,g)=(0,0,0)\). Introduce \(w:=z_t\). Then w solves the system

$$\begin{aligned}&w_{tt}-w_{xx} = 0, \qquad (t,x)\in (0,T)\times (0,1)\\&w(t,0)=0,\ w(t,1)=h'(t), \qquad t \in (0,T)\\&(w(0,.),w_t(0,.))= (z^1 , z^0_{xx}) =(0,0). \end{aligned}$$

Since \(h\in H^1_t\), we infer from (81) that

$$\begin{aligned} ||w||_{C([0,T],L^2_x)} + ||w_t ||_{ C( [0,T],H^{-1}_x)} \le C ||h||_{H^1_t} , \end{aligned}$$
(82)

so that the estimate for \(||z_t ||_{C([0,T],L^2_x) }\) is established. For \(||z||_{C([0,T],H^1_x) }\), it is sufficient to notice that \(z_{xx}=z_{tt}=w_t\) and to combine

$$ ||z_{xx}||_{C([0,T], H^{-1}_x )} \le C ||h||_{H^1_t} $$

with the elliptic estimate

$$ ||z (t,.) ||_{H^1_x} \le C \left( ||z_{xx} (t,.) ||_{H^{-1}_x} + |z(t,0)| + |z(t,1)| \right) \le C ( ||z_{xx} (t,.) ||_{H^{-1}_x} + | h(t) | ) . $$

1.2 Proof of Lemma 2

For \((z,\tilde{z} ) \in C([0,T], \mathcal H)\), let

$$ ||| (z,\tilde{z} ) |||= \max _{t\in [0,T]} ||(z(t),\tilde{z}(t ) )||_{\mathcal H} =\max _{t\in [0,T] } \big ( ||z_x (t) ||^2_{L^2_x} + ||\tilde{z}(t) ||^2_{L^2_x} \big ) ^{\frac{1}{2}} . $$

We shall apply the contraction mapping principle in the ball \(B(0,R)\subset C([0,T], \mathcal H)\), where \(R>0\) will be chosen later on. Note that

$$ ||z||_{L^\infty _x(0,1)} \le ||z_x||_{L^2_x} $$

if \(z\in H^1_x\) with \(z(0)=0\). Assume that \(z^0 \in H^1_0(0,1) \), and that

$$\begin{aligned} ||( z^0,z^1 )||_\mathcal H+ C_1 || h ||_{H^1_t} =: \delta\le & {} \delta _0. \end{aligned}$$
(83)
$$\begin{aligned} R< & {} \delta _0. \end{aligned}$$
(84)

Note that, for \((z,\tilde{z})\in B(0,R)\),

$$ ||z (t) ||_{L^\infty _x (0,1) } \le || z_x (t) ||_{L^2_x} \le ||| (z,\tilde{z}) ||| <\delta _0 \qquad \forall t\in [0,T] . $$

Pick two pairs \((z_1,\tilde{z}_1)\) and \((z_2,\tilde{z}_2)\) in B(0, R). Then by Lemma 1

$$\begin{aligned} |||\Gamma (z_1,\tilde{z}_1) -\Gamma (z_2,\tilde{z}_2)|||= & {} |||\int _0^t S(t-s) (0, f(z_1(s)) - f(z_2(s)) ) ds ||| \nonumber \\\le & {} || f(z_1) - f(z_2) ||_{L^1(0,T,L^2_x)} \nonumber \\\le & {} \eta ||z_1-z_2 ||_{L^1(0,T,L^2_x)} \nonumber \\\le & {} T\eta |||(z_1-z_2,\tilde{z}_1-\tilde{z}_2)|||. \end{aligned}$$
(85)

Note that \(\Gamma \) contracts in B(0, R), for \(T=2\) and \(\eta \) as in (4). On the other hand, for any \((z,\tilde{z}) \in B(0,R)\), we have by Lemma 1 and (85)

$$\begin{aligned} |||\Gamma (z,\tilde{z}) |||\le & {} ||| S(t) (z^0,z^1) + W(h) ||| + ||| \int _0^t S(t-s) (0,f(z(s))) ds |||\nonumber \\\le & {} \delta + 2 \eta ||| (z, \tilde{z}) ) |||. \end{aligned}$$
(86)

Thus \(\Gamma (B(0,R))\subset B(0,R)\) if

$$ \delta + 2\eta R \le R. $$

Pick

$$ R = \frac{\delta }{1-2\eta }\cdot $$

with

$$ 0<\delta< \delta _1 = (1-2\eta ) \delta _0 < \delta _0 . $$

Then \(\Gamma \) has a unique fixed point \((z,\tilde{z})\) in B(0, R) by the contraction mapping principle. Clearly, \(\tilde{z} = z_t\) and (48) holds with \(C_2=(1-2\eta )^{-1}.\)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cavalcanti, M., Cavalcanti, V.D., Rosier, C., Rosier, L. (2022). Numerical Control of a Semilinear Wave Equation on an Interval. In: Auriol, J., Deutscher, J., Mazanti, G., Valmorbida, G. (eds) Advances in Distributed Parameter Systems. Advances in Delays and Dynamics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-94766-8_4

Download citation

Publish with us

Policies and ethics