Abstract
This chapter reviews the performance benefits that result from applying (software) approximate computing to scientific applications. For this purpose, we target two particular areas, linear algebra and deep learning, with the first one selected for being ubiquitous in scientific problems and the second one for its considerable and growing number of important applications both in industry and science.
The review of linear algebra in scientific computing is focused on the iterative solution of sparse linear systems, exposing the prevalent costs of memory accesses in these methods, and demonstrating how approximate computing can help to reduce these overheads, for example, in the case of stationary solvers themselves or the application of preconditioners for the solution of sparse linear systems via Krylov subspace methods.
The discussion of deep learning is focused on the use of approximate data transfer for cutting costs of host-to-device operations, as well as the use of adaptive precision for accelerating training of classical CNN architectures. Additionally we discuss model optimization and architecture search in presence of constraints for edge devices applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Available at http://www.mpfr.org/ (version 4.0.1, February 2018).
References
Golub, G., & Loan, C. V. (1996). Matrix computations, 3rd edn. Baltimore: The Johns Hopkins University Press.
Demmel, J. W. (1997). Applied numerical linear algebra. Philadelphia: SIAM.
Dongarra, J. J., Duff, I. S., Sorensen, D. C., & van der Vorst, H. A. (1998). Numerical linear algebra for high-performance computers. Philadelphia, PA: Society for Industrial and Applied Mathematics.
Anderson, E., Bai, Z., Dongarra, J., Greenbaum, A., McKenney, A., Du Croz, J., Hammarling, S., Demmel, J., Bischof, C., & Sorensen, D. (1990). Lapack: a portable linear algebra library for high-performance computers. In Proceedings of the 1990 ACM/IEEE Conference on Supercomputing, Supercomputing’90, (Los Alamitos, CA, USA) (pp. 2–11). Piscataway: IEEE Computer Society Press.
Blackford, L. S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G., Heroux, M., Kaufman, L., Lumsdaine, A., Petitet, A., Pozo, R., Remington, K., & Whaley, R. C. (2002). An updated set of basic linear algebra subprograms (BLAS). ACM Transactions on Mathematical Software, 28, 135–151 (2002)
Horowitz, M. (2014). Computing’s energy problem (and what we can do about it). In 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (pp. 10–14).
Ginkgo. (2019). https://ginkgo-project.github.io
Buluç, A., Williams, S., Oliker, L., & Demmel, J. (2011). Reduced-bandwidth multithreaded algorithms for sparse matrix-vector multiplication. In 36th IEEE International Parallel & Distributed Processing Symposium IPDPS (pp. 721–733).
Bell, N., & Garland, M. (2008). Efficient sparse matrix-vector multiplication on CUDA. NVIDIA Technical Report NVR-2008-004.
I. S. Commitee. (2000). IEEE standard for modeling and simulation (m&s) high level architecture (HLA) - framework and rules. IEEE Std. 1516–2000 (pp. i–22).
Saad, Y. (2003). Iterative methods for sparse linear systems, 2nd edn. Philadelphia: SIAM.
Wulf, W. A., & McKee, S. A. (1995). Hitting the memory wall: Implications of the obvious. SIGARCH Computer Architecture News, 23, 20–24.
Molka, D., Hackenberg, D., Schöne, R., & Müller, M. S. (2010). Characterizing the energy consumption of data transfers and arithmetic operations on x86–64 processors. In International Green Computing Conference 2010, Chicago, IL, USA, 15–18 August 2010 (pp. 123–133).
Higham, N. J. (2002). Accuracy and stability of numerical algorithms, 2nd edn. Philadelphia: SIAM.
Buttari, A., Dongarra, J. J., Langou, J., Langou, J., Luszczek, P., & Kurzak, J. (2007). Mixed precision iterative refinement techniques for the solution of dense linear systems. International Journal of High Performance Computing Applications, 21(4), 457–486.
Baboulin, M., Buttari, A., Dongarra, J. J., Langou, J., Langou, J., Luszczek, P., Kurzak, J., & Tomov, S. (2009). Accelerating scientific computations with mixed precision algorithms. Computer Physics Communications, 180(12), 2526–2533.
Barrachina, S., Castillo, M., Igual, F. D., Mayo, R., & Quintana-Ortí, E. S. (2008). Solving dense linear systems on graphics processors. In E. Luque, T. Margalef, & D. Benítez (Eds.), Euro-Par 2008 – Parallel Processing (pp. 739–748). Berlin: Springer.
Strzodka, R., & Göddeke, D. (2006). Pipelined mixed precision algorithms on FPGAs for fast and accurate PDE solvers from low precision components. In IEEE Proceedings on Field–Programmable Custom Computing Machines (FCCM 2006). Piscataway: IEEE Computer Society Press.
Anzt, H., Heuveline, V., & Rocker, B. (2010). Mixed precision error correction methods for linear systems Convergence analysis based on Krylov subspace methods. In K. Jonasson (Ed.) PARA 2010, Part II, LNCS 7134 (pp. 237–248). Heidelberg: Springer.
Haidar, A., Tomov, S., Dongarra, J., & Higham, N. J. (2018). Harnessing GPU tensor cores for fast FP16 arithmetic to speed up mixed-precision iterative refinement solvers. In Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis, SC’18, (Piscataway, NJ, USA) (pp. 47:1–47:11). Piscataway: IEEE Press.
Anzt, H., Dongarra, J., & Quintana-Ortí, E. S. (2015). Adaptive precision solvers for sparse linear systems. In Proceedings of the 3rd International Workshop on Energy Efficient Supercomputing, E2SC’15, (New York, NY, USA) (pp. 2:1–2:10). New York: ACM.
Grützmacher, T., & Anzt, H. (2019). A modular precision format for decoupling arithmetic format and storage format. In G. Mencagli, D. B. Heras, V. Cardellini, E. Casalicchio, E. Jeannot, F. Wolf, A. Salis, C. Schifanella, R. R. Manumachu, L. Ricci, M. Beccuti, L. Antonelli, J. D. Garcia Sanchez, & S. L. Scott (Eds.), Euro-Par 2018: Parallel Processing Workshops (pp. 434–443). Cham: Springer.
Grützmacher, T., Cojean, T., Flegar, G., Göbel, F., & Anzt, H. (2019). A customized precision format based on mantissa segmentation for accelerating sparse linear algebra. Concurrency and Computation: Practice and Experience, 32(2), e5418. e5418 cpe.5418.
Anzt, H., Flegar, G., Grützmacher, T., & Quintana-Ortí, E. S. (2019). Toward a modular precision ecosystem for high-performance computing. The International Journal of High Performance Computing Applications, 33(6), 1069–1078.
Grützmacher, T., Anzt, H., Scheidegger, F., & Quintana-Ortí, E. S. (2018). High-performance GPU implementation of PageRank with reduced precision based on mantissa segmentation. In 2018 IEEE/ACM 8th Workshop on Irregular Applications: Architectures and Algorithms (IA3) (pp. 61–68).
Anzt, H., Dongarra, J., Flegar, G., Higham, N. J., & Quintana-Ortí, E. S. (2019). Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers. Concurrency and Computation: Practice and Experience, 31(6), 1–12.
Tadano, H., & Sakurai, T. (2008). On single precision preconditioners for krylov subspace iterative methods. In I. Lirkov, S. Margenov, & J. Waśniewski (Eds.), Large-Scale Scientific Computing (pp. 721–728). Berlin: Springer.
Gropp, W. D., Kaushik, D. K., Keyes, D. E., & Smith, B. F. (2000). Latency, bandwidth, and concurrent issue limitations in high-performance CFD. In Proceedings of the First MIT Conference on Computational Fluid and Solid Mechanics.
Carson, E., & Higham, N. J. (2017). A new analysis of iterative refinement and its application to accurate solution of ill-conditioned sparse linear systems. SIAM Journal on Scientific Computing, 39(6), A2834–A2856.
Carson, E., & Higham, N. J. (2018). Accelerating the solution of linear systems by iterative refinement in three precisions. SIAM Journal on Scientific Computing, 40(2), A817–A847.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks, In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems (vol. 25, pp. 1097–1105). New York: Curran Associates.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1–9).
Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T. N., & Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82–97.
Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, Ł., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., et al. (2016). Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv:1609.08144.
Ciregan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. In 2012 IEEE Conference on Computer Vision and Pattern Recognition (pp. 3642–3649).
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, NIPS’12 (pp. 1097–1105). New York: Curran Associates.
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., et al. (2016). Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, OSDI’16 (pp. 265–283). Berkeley: USENIX Association.
Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan, F., Jackson, B. L., Imam, N., Guo, C., Nakamura, Y., Brezzo, B., Vo, I., Esser, S. K., Appuswamy, R., Taba, B., Amir, A., Flickner, M., Risk, W., Manohar, R., et al. (2014). A million spiking-neuron integrated circuit with a scalable communication network and interface. Science, 345(6197), 668–673.
Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers, A., Boyle, R., Cantin, P.-L., Chao, C., Clark, C., Coriell, J., Daley, M., Dau, M., Dean, J., Gelb, B., et al. (2017). In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th Annual International Symposium on Computer Architecture, ISCA’17 (pp. 1–12). New York: ACM.
Kurth, T., Zhang, J., Satish, N., Mitliagkas, I., Racah, E., Patwary, M. A., Malas, T., Sundaram, N., Bhimji, W., Smorkalov, M., Deslippe, J., Shiryaev, M., Sridharan, S., Prabhat, P. D. (2017). Deep learning at 15pf: Supervised and semi-supervised classification for scientific data. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC’17 (pp. 7:1–7:11). New York: ACM.
Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Thesis, Harvard University.
Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1988). Numerical recipes in C: The art of scientific computing. New York: Cambridge University Press.
Kiefer, J., & Wolfowitz, J. (1952). Stochastic estimation of the maximum of a regression function. The Annals of Mathematical Statistics, 23, 462–466.
You, Y., Buluc, A., & Demmel, J. (2017). Scaling deep learning on GPU and knights landing clusters. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC’17, pp. 9:1–9:12. New York: ACM.
Gupta, S., Agrawal, A., Gopalakrishnan, K., & Narayanan, P. (2015). Deep learning with limited numerical precision. In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015 (pp. 1737–1746).
Köster, U., Webb, T., Wang, X., Nassar, M., Bansal, A. K., Constable, W., Elibol, O., Gray, S., Hall, S., Hornof, L., Khosrowshahi, A., Kloss, C., Pai, R. J., & Rao, N. (2017). Flexpoint: An adaptive numerical format for efficient training of deep neural networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in Neural Information Processing Systems(vol. 30, pp. 1742–1752). New York: Curran Associates.
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. CoRR, vol. abs/1409.1556.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 770–778).
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR09).
Bottou, L., & Bousquet, O. (2008). The tradeoffs of large scale learning. In Advances in Neural Information Processing Systems (pp. 161–168).
Micikevicius, P., Narang, S., Alben, J., Diamos, G. F., Elsen, E., García, D., Ginsburg, B., Houston, M., Kuchaiev, O., Venkatesh, G., & Wu, H. (2018). Mixed precision training. In Seventh International Conference on Learning Representations (ICLR).
Dean, J., Corrado, G. S., Monga, R., Chen, K., Devin, M., Le, Q. V., Mao, M. Z., Ranzato, M., Senior, A., Tucker, P., Yang, K., & Ng, A. Y. (2012). Large scale distributed deep networks. In NIPS’12: Proceedings of the 25th International Conference on Neural Information Processing Systems.
Holi, J. L., & Hwang, J. N. (1993). Finite precision error analysis of neural network hardware implementations. IEEE Transactions on Computers, 42, 281–290.
Courbariaux, M., Bengio, Y. & David, J. (2014). Low precision arithmetic for deep learning. CoRR, vol. abs/1412.7024.
Rŋos, J. O., Armejach, A., Khattak, G., Petit, E., Vallecorsa, S., & Casas, M. (2020). Evaluating mixed-precision arithmetic for 3d generative adversarial networks to simulate high energy physics detectors. In 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 49–56).
RÃŋos, J. O., Armejach, A., Petit, E., Henry, G., & Casas, M. (2021). Dynamically adapting floating-point precision to accelerate deep neural network training. In 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA).
Niu, F., Recht, B., Re, C., & Wright, S. J. (2011). Hogwild! A lock-free approach to parallelizing stochastic gradient descent. In Proceedings of the 24th International Conference on Neural Information Processing Systems, NIPS’11 (pp. 693–701). New York: Curran Associates.
Zhang, S., Choromanska, A., & LeCun, Y. (2014). Deep learning with elastic averaging SGD. CoRR, vol. abs/1412.6651.
Coates, A., Huval, B., Wang, T., Wu, D. J., Ng, A. Y., & Catanzaro, B. (2013). Deep learning with cots HPC systems. In Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28, ICM’13 (pp. III–1337–III–1345), JMLR.org.
Le, Q. V., Monga, R., Devin, M., Corrado, G., Chen, K., Ranzato, M., Dean, J., & Ng, A. Y. (2011). Building high-level features using large scale unsupervised learning. CoRR, vol. abs/1112.6209.
Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M. A., & Dally, W. J. (2016). EIE: Efficient inference engine on compressed deep neural network. CoRR, vol. abs/1602.01528.
Lin, Y., Han, S., Mao, H., Wang, Y., & Dally, W. J. (2017). Deep gradient compression: Reducing the communication bandwidth for distributed training. CoRR, vol. abs/1712.01887.
Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., & Li, H. (2017). Terngrad: Ternary gradients to reduce communication in distributed deep learning. CoRR, vol. abs/1705.07878.
Alistarh, D., Li, J., Tomioka, R., & Vojnovic, M. (2016). QSGD: Randomized quantization for communication-optimal stochastic gradient descent. CoRR, vol. abs/1610.02132.
Aji, A. F., & Heafield, K. (2017). Sparse communication for distributed gradient descent. CoRR, vol. abs/1704.05021.
Murray, A. F., & Edwards, P. J. (1994). Enhanced MLP performance and fault tolerance resulting from synaptic weight noise during training. IEEE Transactions on Neural Networks, 5, 792–802.
Bishop, C. M. (1995). Training with noise is equivalent to Tikhonov regularization. Neural Computation, 7, 108–116.
Audhkhasi, K., Osoba, O., & Kosko, B. (2013). Noise benefits in backpropagation and deep bidirectional pre-training. In The 2013 International Joint Conference on Neural Networks (IJCNN) (pp. 1–8).
Dagum, L., & Menon, R. (1998). Openmp: An industry-standard API for shared-memory programming. IEEE Computing in Science & Engineering, 5, 46–55.
Lomont, C. (2011). Introduction to intel advanced vector extensions. Intel white paper.
Gwennap, L. (1998). AltiVec vectorizes PowerPC. Microprocessors Report (vol. 12, pp. 1–5).
IEEE standard for floating point arithmetic (2008). IEEE Std 754–2008 (pp. 1–70).
Krizhevsky, A. (2014). One weird trick for parallelizing convolutional neural networks. CoRR, vol. abs/1404.5997.
Seo, H., Liu, Z., Großschädl, J., & Kim, H. (2015). Efficient arithmetic on arm-neon and its application for high-speed RSA implementation. IACR Cryptology ePrint Archive, 2015, 465.
NVIDIA Corporation. (2018). CUDA toolkit documentation. v10.0.130 ed.
Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural Networks, 12(1), 145–151.
NVIDIA Corporation. (2016). Nvlink fabric
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 248–255).
Stallkamp, J., Schlipsing, M., Salmen, J., & Igel, C. (2011). The German traffic sign recognition benchmark: A multi-class classification competition. In The 2011 International Joint Conference on Neural Networks (pp. 1453–1460).
Deng, L. (2012). The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Processing Magazine, 29(6), 141–142.
Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms. https://www.bibsonomy.org/bibtex/2de51af2f6c7d8b0f4cd84a428bb17967/andolab and https://arxiv.org/abs/1708.07747
Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.222.9220
Coates, A., Ng, A., & Lee, H. (2011). An analysis of single-layer networks in unsupervised feature learning. In G. Gordon, D. Dunson, & M. DudÃŋk (Eds.) Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research (vol. 15, pp. 215–223), Fort Lauderdale: PMLR.
Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A. Y. (2011). Reading digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning and Unsupervised Feature Learning (vol. 2011, p. 5).
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A. (2018). Places: A 10 million image database for scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 1452–1464.
Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., & Vedaldi, A. (2014). Describing textures in the wild. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR’14 (pp. 3606–3613). Washington: IEEE Computer Society.
Bossard, L., Guillaumin, M., & Van Gool, L. (2014). Food-101 – mining discriminative components with random forests. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.) Computer Vision – ECCV 2014 (pp. 446–461). Cham: Springer.
Nilsback, M. E., & Zisserman, A. (2008). Automated flower classification over a large number of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics Image Processing (pp. 722–729).
Quattoni, A., & Torralba, A. (2009). Recognizing indoor scenes. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (pp. 413–420).
Li, W., Logenthiran, T., Phan, V.-T., & Woo, W. L. (2019). A novel smart energy theft system (sets) for IoT based smart home. IEEE Internet of Things Journal, 6, 5531–5539.
Fenza, G., Gallo, M., & Loia, V. (2019). Drift-aware methodology for anomaly detection in smart grid. IEEE Access, 7, 9645–9657.
Gaber, M. M., Aneiba, A., Basurra, S., Batty, O., Elmisery, A. M., Kovalchuk, Y., & Rehman, M. H. U. (2019). Internet of things and data mining: From applications to techniques and systems. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(3), e1292.
Nordrum, A. (2016). The internet of fewer things [news]. IEEE Spectrum, 53, 12–13.
Pytorch. Retrieved 22 May, 2019, from https://pytorch.org/
Flegar, G., Scheidegger, F., Novakovic, V., Mariani, G., Tomas, A., Malossi, C., & Quintana-Ortí, E. (2019). Float x: A c++library for customized floating-point arithmetic. ACM Trans. Math. Softw. (to appear)
Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., & Zimmermann, P. (2007). MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Transactions on Mathematical Software (TOMS), 33(2), 13.
Zuras, D., Cowlishaw, M., Aiken, A., Applegate, M., Bailey, D., Bass, S., Bhandarkar, D., Bhat, M., Bindel, D., Boldo, S., et al. (2008). IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pp. 1–70. http://www.dsc.ufcg.edu.br/cnum/modulos/Modulo2/IEEE754_2008.pdf
Loroch, D. M., Pfreundt, F.-J., Wehn, N., & Keuper, J. (2017). Tensorquant: A simulation toolbox for deep neural network quantization. In Proceedings of the Machine Learning on HPC Environments,MLHPC’17 (pp. 1:1–1:8). New York: ACM.
Rybalkin, V., Wehn, N., Yousefi, M. R., & Stricker, D. (2017). Hardware architecture of bidirectional long short-term memory neural network for optical character recognition. In Proceedings of the Conference on Design, Automation & Test in Europe (pp. 1394–1399). European Design and Automation Association.
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. CoRR, vol. abs/1704.04861.
Jaderberg, M., Vedaldi, A., & Zisserman, A. (2014). Speeding up convolutional neural networks with low rank expansions. CoRR, vol. abs/1405.3866.
Hill, P., Zamirai, B., Lu, S., Chao, Y., Laurenzano, M., Samadi, M., Papaefthymiou, M. C., Mahlke, S. A., Wenisch, T. F., Deng, J., Tang, L., & Mars, J. (2018). Rethinking numerical representations for deep neural networks. CoRR, vol. abs/1808.02513.
Cavigelli, L., & Benini, L. (2018). Extended bit-plane compression for convolutional neural network accelerators. CoRR, vol. abs/1810.03979.
Ashiquzzaman, A., Ma, L. V., Kim, S., Lee, D., Um, T., & Kim, J. (2019). Compacting deep neural networks for light weight IoT SCADA based applications with node pruning. In 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) (pp. 082–085).
Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B., Shahrzad, H., Navruzyan, A., Duffy, N., & Hodjat, B. (2019). Chapter 15 - evolving deep neural networks. In R. Kozma, C. Alippi, Y. Choe, & F. C. Morabito (Eds.), Artificial Intelligence in the Age of Neural Networks and Brain Computing (pp. 293–312). Cambridge: Academic Press.
Xie, L., & Yuille, A. (2017). Genetic CNN. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1379–1388).
Zhong, Z., Yan, J., & Liu, C. (207). Practical network blocks design with q-learning. CoRR, vol. abs/1708.05552.
Zoph, B., & Le, Q. V. (2016). Neural architecture search with reinforcement learning. CoRR, vol. abs/1611.01578.
Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transferable architectures for scalable image recognition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Cai, H., Chen, T., Zhang, W., Yu, Y., & Wang, J. (2018). Efficient architecture search by network transformation. In Thirty-Second AAAI Conference on Artificial Intelligence.
Baker, B., Gupta, O., Naik, N., & Raskar, R. (2016). Designing neural network architectures using reinforcement learning. CoRR, vol. abs/1611.02167.
Wistuba, M., Rawat, A., & Pedapati, T. (2019). A survey on neural architecture search. arXiv:1905.01392.
Scheidegger, F., Benini, L., Bekas, C., & Malossi, C. (2019). Constrained deep neural network architecture search for IoT devices accounting for hardware calibration. In Advances in Neural Information Processing Systems.
Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes used in genetic algorithms. In Foundations of genetic algorithms (vol. 1, pp. 69–93). Amsterdam: Elsevier.
Scheidegger, F., Istrate, R., Mariani, G., Benini, L., Bekas, C., & Malossi, C. (2021). Efficient image dataset classification difficulty estimation for predicting deep-learning accuracy. The Visual Computer volume 37, 1593–1610. https://link.springer.com/article/10.1007/s00371-020-01922-5
Conti, F., Rossi, D., Pullini, A., Loi, I., & Benini, L. (2016). Pulp: A ultra-low power parallel accelerator for energy-efficient and flexible embedded vision. Journal of Signal Processing Systems, 84, 339–354.
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778).
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. CoRR, vol. abs/1704.04861.
Chen, Y., Li, J., Xiao, H., Jin, X., Yan, S., & Feng, J. (2017). Dual path networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in Neural Information Processing Systems 30 (pp. 4467–4475). New York: Curran Associates.
Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Anzt, H., Casas, M., Malossi, A. .I., Quintana-Ortí, E.S., Scheidegger, F., Zhuang, S. (2022). Approximate Computing for Scientific Applications. In: Bosio, A., Ménard, D., Sentieys, O. (eds) Approximate Computing Techniques. Springer, Cham. https://doi.org/10.1007/978-3-030-94705-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-94705-7_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-94704-0
Online ISBN: 978-3-030-94705-7
eBook Packages: EngineeringEngineering (R0)