Skip to main content

Combustion and Exhaust Emissions of Biogas Dual-Fuel Engines

  • Chapter
  • First Online:
Biogas Combustion Engines for Green Energy Generation

Abstract

Biogas can be utilized in dual-fuel engines because of higher thermal efficiency. Biogas is supplied from intake port and liquid diesel fuel is injected in the cylinder directly. The combustion starts from the autoignition of a mixture of vaporized liquid fuel, further igniting biogas and air mixture. The initial combustion occurs at multi points, leading to certain and stable ignition followed by turbulent combustion. At first, visualization of the dual-fuel combustion with micro pilot injection is presented. The effects of liquid fuel injected, biogas flow rate, load, carbon dioxide (CO2) ratio in biogas, exhaust gas recirculation (EGR), compression ratio, H2 addition, pre-heating and other parameters are reviewed based on the literatures. Next, an example of the combustion achieving higher output and thermal efficiency with micro pilot dual-fuel combustion is described, as well as exhaust emissions. After the premixed mixture is autoignited in the end-gas region in latter half of the combustion, pressure oscillation does not occur in some conditions and transition to abnormal knocking combustion is avoided. The effect of CO2 ratio on PREMIER combustion was investigated and it was found that with higher concentrations of CO2 it was easier to keep control of PREMIER combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATDC:

After TDC

BDF:

Bio diesel fuel

BGES:

Biogas energy share

BSFC:

Brake specific fuel consumption

BTDC:

Before TDC

BTE:

Brake thermal efficiency

CA:

Crank angle

CH4:

Methane

CI:

Compression ignition

CME:

Coconut methyl ester

CN:

Cetane number

CO:

Carbon monoxide

CO2:

Carbon dioxide

COV:

Coefficient of variation

DEE:

Diethyl ether

DME:

Dimethyl ether

EGR:

Exhaust gas recirculation

HMN:

Heptamethylnonane

IMEP:

Indicated mean effective pressure

HC:

Hydrocarbon

JME:

Jatropha methyl ester

KI:

Knock intensity

KME:

Karanja methyl ester

LPG:

Liquefied petroleum gas

NO:

Nitrogen oxide

NOx:

Oxides of nitrogen

PBD:

Polanga biodiesel

PM:

Particulate matter

PME:

Palm methyl ester

PREMIER:

Premixed mixture ignition in the end gas region

ROHR:

Rate of heat release

SME:

Soybean methyl ester

TDC:

Top dead center

THC:

Total hydrocarbons

References

  1. G.A. Karim, A review of combustion processes in the dual fuel engine-the gas diesel engine. Progress Energy Combust. Sci. 6, 277–285 (1980). https://doi.org/10.1016/0360-1285(80)90019-2

    Article  Google Scholar 

  2. G.A. Karim, Combustion in gas fueled compression Ignition engines of the dual fuel type. Trans. ASME J. Eng. Gas Turbines Power 125, 827–836 (2003). https://doi.org/10.1115/1.1581894

  3. B.B. Sahoo, N. Sahoo, U.K. Saha, Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines—a critical review. Renew. Sustain. Energy Rev. 13, 1151–1184 (2009). https://doi.org/10.1016/j.rser.2008.08.003

    Article  Google Scholar 

  4. N.N. Mustafi, R.R. Raine, P.K. Bansal, The use of biogas in internal combustion engines—a review. ASME ICES2006 1306, 225–234 (2006). https://doi.org/10.1115/ICES2006-1306

  5. J.K. Mwangi, W.J. Lee, Y.C. Chang, C.Y. Chen, L.C. Wang, An overview: Energy saving and pollution reduction by using green fuel blends in diesel engines. Appl. Energy 159, 2140236 (2015). https://doi.org/10.1016/j.apenergy.2015.08.084

    Article  Google Scholar 

  6. P. Rosha, A. Dhir, S.K. Mohapatra, Influence of gaseous fuel induction on the various engine characteristics of a dual fuel compression ignition engine: a review. Renew. Sustain. Energy Rev. 82, 3333–3349 (2018). https://doi.org/10.1016/j.rser.2017.10.055

    Article  Google Scholar 

  7. C. Deheri, S.K. Acharya, D.N. Thatoi, A.P. Mohanty, A review on performance of biogas and hydrogen on diesel engine in dual fuel mode. Fuel 260, 116337 (2020). https://doi.org/10.1016/j.fuel.2019.116337

    Article  Google Scholar 

  8. C. Jiang, T. Liu, J. Zhong, A study on compressed biogas and its application to the compression ignition dual-fuel engine. Biomass 20, 53–59 (1989). https://doi.org/10.1016/0144-4565(89)90020-6

    Article  Google Scholar 

  9. A. Bilcan, O. Le Corre, A. Delebarre, Thermal efficiency and environmental performances of a biogas-diesel stationary engine. Environ. Technol. 24, 1165–1173 (2003). https://doi.org/10.1080/09593330309385657

    Article  Google Scholar 

  10. D. Barik, S. Murugan, Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas-diesel in dual fuel mode. Energy 72, 760–771 (2014). https://doi.org/10.1016/j.energy.2014.05.106

    Article  Google Scholar 

  11. D. Barik, M. Sivalingam, Performance and emission characteristics of a biogas fueled DI diesel engine. SAE Tech. Paper 2013-01-2507 (2013). https://doi.org/10.4271/2013-01-2507

  12. D. Barik, A.K. Satapathy, S. Murugan, Combustion analysis of the diesel–biogas dual fuel direct injection diesel engine– the gas diesel engine. Int. J. Ambient Energy 38, 259–266 (2015). https://doi.org/10.1080/01430750.2015.1086681

    Article  Google Scholar 

  13. K. Cacua, L. Olmos-Villalba, B. Herrera, A. Gallego, Experimental evaluation of a diesel-biogas dual fuel engine operated on micro-trigeneration system for power, drying and cooling. Appl. Therm. Eng. 100, 762–767 (2016). https://doi.org/10.1016/j.applthermaleng.2016.02.067

    Article  Google Scholar 

  14. S.K. Mahla, V. Singla, S.S. Sandhu, A. Dhir, Studies on biogas-fuelled compression ignition engine under dual fuel mode. Environ. Sci. Pollut. Res. 25, 9722–9729 (2018). https://doi.org/10.1007/s11356-018-1247-4

    Article  Google Scholar 

  15. K.A. Rahman, A. Ramesh, Studies on the effects of methane fraction and injection strategies in a biogas diesel common rail dual fuel engine. Fuel 236, 147–165 (2019). https://doi.org/10.1016/j.fuel.2018.08.091

    Article  Google Scholar 

  16. M.S. Gaikwad, A.H. Kolekar, K.M. Jadhav, M.S. Yadav, P.R. Chitragar, Performance and emission characteristics of biomethane-diesel dual-fuelled CI engine in the presence of exhaust gas recirculation. Int. J. Ambient Energy (2020). https://doi.org/10.1080/01430750.2020.1722741

  17. C. Jagadish, V. Gumtapure, Experimental studies on cyclic variations in a single cylinder diesel engine fuelled with raw biogas by dual mode of operation. Fuel 266, 117062 (2020). https://doi.org/10.1016/j.fuel.2020.117062

    Article  Google Scholar 

  18. P.M. Duc, K. Wattanavichien, Study on biogas premixed charge diesel dual fuelled engine. Energy Convers. Manage. 48, 2286–2308 (2007). https://doi.org/10.1016/j.enconman.2007.03.020

    Article  Google Scholar 

  19. C.C.M. Luijten, E. Kerkhof, Jatropha oil and biogas in a dual fuel CI engine for rural electrification. Energy Convers. Manage. 52, 1426–1438 (2011). https://doi.org/10.1016/j.enconman.2010.10.005

    Article  Google Scholar 

  20. V. Makareviciene, E. Sendzikiene, S. Pukalskas, A. Rimkus, R. Vegneris, Performance and emission characteristics of biogas used in diesel engine operation. Energy Convers. Manage. 75, 224–233 (2013). https://doi.org/10.1016/j.enconman.2013.06.012

    Article  Google Scholar 

  21. M. Feroskhan, S. Ismail, Investigation of the effects of biogas composition on the performance of a biogas-diesel dual fuel CI engine. Biofuels 7, 593–601 (2016). https://doi.org/10.1080/17597269.2016.1168025

    Article  Google Scholar 

  22. H. Ambarita, Performance and emission characteristics of a small diesel engine run in dual-fuel (diesel-biogas) mode. Case Stud. Therm. Eng. 10, 179–191 (2017). https://doi.org/10.1016/j.csite.2017.06.003

    Article  Google Scholar 

  23. H. Ambarita, Effect of engine load and biogas flow rate to the performance of a compression ignition engine run in dual-fuel (diesel-biogas) mode. IOP Conf. Ser.: Mater. Sci. Eng. 309, 012006 (2018). https://iopscience.iop.org/article/10.1088/1757-899X/309/1/012006

  24. R. Bouguessa, L. Tarabet, K. Loubar, T. Belmrabet, M. Tazerout, Experimental investigation on biogas enrichment with hydrogen for improving the combustion in diesel engine operating under dual fuel mode. Int. J. Hydrogen Energy 45, 9052–9063 (2020). https://doi.org/10.1016/j.ijhydene.2020.01.003

    Article  Google Scholar 

  25. F.Z. Aklouche, K. Loubar, A. Bentebbiche, S. Awad, M. Tazerout, Experimental investigation of the equivalence ratio influence on combustion, performance and exhaust emissions of a dual fuel diesel engine operating on synthetic biogas fuel. Energy Convers. Manage. 152, 291–299 (2017). https://doi.org/10.1016/j.enconman.2017.09.050

    Article  Google Scholar 

  26. N.N. Mustafi, R.R. Raine, A study of the emissions of a dual fuel engine operating with alternative gaseous fuels. SAE Tech. Paper 2008-01-1394 (2008). https://doi.org/10.4271/2008-01-1394

  27. C. Nayak, S.S. Sahoo, L.N. Rout, Emission analysis of a dual fuel diesel engine fuelled with different gaseous fuels generated from waste biomass. Int. J. Ambient Energy 42, 570–575 (2021). https://doi.org/10.1080/01430750.2018.1562971

    Article  Google Scholar 

  28. S. Verma, L.M. Das, S.S. Bhatti, S.C. Kaushik, A comparative exergetic performance and emission analysis of pilot diesel dual-fuel engine with biogas, CNG and hydrogen as main fuels. Energy Convers. Manage. 151, 764–777 (2017). https://doi.org/10.1016/j.enconman.2017.09.035

    Article  Google Scholar 

  29. D. Barik, S. Murugan, Experimental investigation on the behavior of a DI diesel engine fueled with raw biogas-diesel dual fuel at different injection timing. J. Energy Inst. 89, 373–388 (2016). https://doi.org/10.1016/j.joei.2015.03.002

    Article  Google Scholar 

  30. S. Das, D. Kashyap, B.J. Bora, P. Kalita, V. Kulkarni, Thermo-economic optimization of a biogas-diesel dual fuel engine as remote power generating unit using response surface methodology. Therm. Sci. Eng. Progr. 24, 100935 (2021). https://doi.org/10.1016/j.tsep.2021.100935

    Article  Google Scholar 

  31. M. Feroskhan, S. Ismail, Evaluating the effect of intake parameters on the performance of a biogas–diesel dual-fuel engine using the Taguchi method. Biofuels 11, 441–449 (2020). https://doi.org/10.1080/17597269.2017.1370885

    Article  Google Scholar 

  32. A. Sharma, N.A. Ansari, A. Pal, Y. Singh, S. Lalhriatpuia, Effect of biogas on the performance and emissions of diesel engine fuelled with biodiesel-ethanol blends through response surface methodology approach. Renew. Energy 14, 657–668 (2019). https://doi.org/10.1016/j.renene.2019.04.031

    Article  Google Scholar 

  33. S.K. Mahla, S.M. Safieddin Ardebili, H. Sharma, A. Dhir, G. Goga, H. Solmaz, Determination and utilization of optimal diesel/n-butanol/biogas derivation for small utility dual fuel diesel engine. Fuel 289, 119913 (2021). https://doi.org/10.1016/j.fuel.2020.119913

  34. S.S. Kalsi, K.A. Subramanian, Effect of simulated biogas on performance, combustion and emissions characteristics of a bio-diesel fueled diesel engine. Renew. Energy 106, 78–90 (2017). https://doi.org/10.1016/j.renene.2017.01.006

    Article  Google Scholar 

  35. M.S. Lounici, K. Loubar, M. Tazerout, M. Balistrou, L. Tarabet, Experimental investigation on the performance and exhaust emission of biogas-diesel dual-fuel combustion in a CI engine. SAE Tech. Paper 2014-01-2689 (2014). https://doi.org/10.4271/2014-01-2689

  36. S. Verma, L.M. Das, S.C. Kaushik, Effects of varying composition of biogas on performance and emission characteristics of compression ignition engine using exergy analysis. Energy Convers. Manage. 138, 346–359 (2017). https://doi.org/10.1016/j.enconman.2017.01.066

    Article  Google Scholar 

  37. A. Henham, M.K. Makkar, Combustion of simulated biogas in a dual-fuel diesel engine. Energy Convers. Manage. 39, 2001–2009 (1998). https://doi.org/10.1016/S0196-8904(98)00071-5

    Article  Google Scholar 

  38. N.N. Mustafi, R.R. Raine, S. Verhelst, Combustion and emissions characteristics of a dual fuel engine operated on alternative gaseous fuels. Fuel 109, 669–678 (2013). https://doi.org/10.1016/j.fuel.2013.03.007

    Article  Google Scholar 

  39. S. Bari, Effect of carbon dioxide on the performance of biogas/diesel dual-fuel engine. Renew. Energy 9, 1007–1010 (1996). https://doi.org/10.1016/0960-1481(96)88450-3

    Article  Google Scholar 

  40. S. Verma, L.M. Das, S.C. Kaushik, S.S. Bhatti, The effects of compression ratio and EGR on the performance and emission characteristics of diesel-biogas dual fuel engine. Appl. Therm. Eng. 150, 1090–1103 (2019). https://doi.org/10.1016/j.applthermaleng.2019.01.080

    Article  Google Scholar 

  41. M.S. Gaikwad, K.M. Jadhav, A.H. Kolekar, P.R. Chitragar, Combustion characteristics of biomethane–diesel dual-fueled CI engine with exhaust gas recirculation. Biofuels 12, 369–379 (2021). https://doi.org/10.1080/17597269.2018.1479136

    Article  Google Scholar 

  42. F. Königsson, P. Stalhammar, H-E. Angstrom, Characterization and potential of dual fuel combustion in a modern diesel engine. SAE Tech. Paper 2011-01-2223 (2011). https://doi.org/10.4271/2011-01-2223

  43. C.W. Oo, M. Shioji, S. Nakao, N.N. Dung, I. Reksowardojo, S.A. Roces, N.P. Dugos, Ignition and combustion characteristics of various biodiesel fuels (BDFs). Fuel 158, 279–287 (2015). https://doi.org/10.1016/j.fuel.2015.05.049

    Article  Google Scholar 

  44. J.J. Hernández, M. Lapuerta, J. Barba, Effect of partial replacement of diesel or biodiesel with gas from biomass gasification in a diesel engine. Energy 89, 148–157 (2015). https://doi.org/10.1016/j.energy.2015.07.050

    Article  Google Scholar 

  45. S.H. Yoon, C.S. Lee, Effect of biofuels combustion on the nanoparticle and emission characteristics of a common-rail DI diesel engine. Fuel 90, 3071–3077 (2011). https://doi.org/10.1016/j.fuel.2011.05.007

    Article  Google Scholar 

  46. S.H. Yoon, C.S. Lee, Experimental investigation on the combustion and exhaust emission characteristics of biogas–biodiesel dual-fuel combustion in a CI engine. Fuel Proces. Technol. 92, 992–1000 (2011). https://doi.org/10.1016/j.fuproc.2010.12.021

    Article  Google Scholar 

  47. D. Barik, M. Sivalingam, Investigation on performance and exhaust emissions characteristics of a DI diesel engine fueled with Karanja methyl ester and biogas in dual fuel mode. SAE Tech. Paper 2014-01-1311 (2014). https://doi.org/10.4271/2014-01-1311

  48. D. Barik, S. Murugan, Simultaneous reduction of NOx and smoke in a dual fuel DI diesel engine. Energy Convers. Manage. 84, 217–226 (2014). https://doi.org/10.1016/j.enconman.2014.04.042

    Article  Google Scholar 

  49. D. Barik, S. Murugan, Effects of diethyl ether (DEE) injection on combustion performance and emission characteristics of Karanja methyl ester (KME)–biogas fueled dual fuel diesel engine. Fuel 164, 286–296 (2016). https://doi.org/10.1016/j.fuel.2015.09.094

    Article  Google Scholar 

  50. D. Barik, S. Murugan, N.M. Sivaram, E. Baburaj, P. Shanmuga Sundaram, Experimental investigation on the behavior of a direct injection diesel engine fueled with Karanja methyl ester-biogas dual fuel at different injection timings. Energy 118, 127–138 (2017). https://doi.org/10.1016/j.energy.2016.12.025

  51. D. Barik, A. Kumar, S. Murugan, Effect of compression ratio on combustion performance and emission characteristic of a direct injection diesel engine fueled with upgraded biogas-Karanja methyl ester-diethyl ether port injection. Energy Fuels 32, 5081–5089 (2018). https://doi.org/10.1021/acs.energyfuels.7b01977

    Article  Google Scholar 

  52. N. Khayum, S. Anbarasu, S. Murugan, Optimization of fuel injection parameters and compression ratio of a biogas fueled diesel engine using methyl esters of waste cooking oil as a pilot fuel. Energy 221, 119865 (2021). https://doi.org/10.1016/j.energy.2021.119865

    Article  Google Scholar 

  53. D.K. Ramesha, A.S. Bangari, C.P. Rathod, R.S. Chaitanya, Combustion, performance and emissions characteristics of a biogas fuelled diesel engine with fish biodiesel as pilot fuel. Biofuels 6, 9–19 (2015). https://doi.org/10.1080/17597269.2015.1036960

    Article  Google Scholar 

  54. B.J. Bora, U.K. Saha, Comparative assessment of a biogas run dual fuel diesel engine with rice bran oil methyl ester, pongamia oil methyl ester and palm oil methyl ester as pilot fuels. Renew. Energy 81, 490–498 (2015). https://doi.org/10.1016/j.renene.2015.03.019

    Article  Google Scholar 

  55. A. Sharma, Y. Singh, N.A. Ansari, A. Pal, S. Lalhriatpuia, Experimental investigation of the behaviour of a DI diesel engine fuelled with biodiesel/diesel blends having effect of raw biogas at different operating responses. Fuel 279, 118460 (2020). https://doi.org/10.1016/j.fuel.2020.118460

    Article  Google Scholar 

  56. S.H. Park, S.H. Yoon, J. Cha, C.S. Lee, Mixing effects of biogas and dimethyl ether (DME) on combustion and emission characteristics of DME fueled high-speed diesel engine. Energy 66, 413–422 (2014). https://doi.org/10.1016/j.energy.2014.02.007

    Article  Google Scholar 

  57. B.J. Bora, U.K. Saha, Improving the performance of a biogas powered dual fuel diesel engine using emulsified rice bran biodiesel as pilot fuel through adjustment of compression ratio and injection timing. Trans. ASME J. Eng. Gas Turbines Power 137, 091505 (2015). https://doi.org/10.1115/1.4029708

  58. B.J. Bora, U.K. Saha, Estimating the theoretical performance limits of a biogas powered dual fuel diesel engine using emulsified rice bran biodiesel as pilot fuel. Trans. ASME J. Energy Resour. Technol. 138, 021801 (2016). https://doi.org/10.1115/1.4031836

    Article  Google Scholar 

  59. B.K. Debnath, B.J. Bora, N. Sahoo, J.K. Saha, Influence of emulsified palm biodiesel as pilot fuel in a biogas run dual fuel diesel engine. ASCE J. Energy Eng. 140 (2014). https://doi.org/10.1061/(ASCE)EY.1943-7897.0000163

  60. M. Feroskhan, S. Ismail, A. Kumar, V. Kumar, S.K. Aftab, Investigation of the effects of biogas flow rate and cerium oxide addition on the performance of a dual fuel CI engine. Biofuels 8, 197–205 (2017). https://doi.org/10.1080/17597269.2016.1215072

    Article  Google Scholar 

  61. B.J. Bora, U.K. Saha, S. Chatterjee, V. Veer, Effect of compression ratio on performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas. Energy Convers. Manage. 87, 1000–1009 (2014). https://doi.org/10.1016/j.enconman.2014.07.080

    Article  Google Scholar 

  62. H.N. Singh, A. Layek, Experimental exploration of the impact of compression ratio on the characteristics of a biogas fueled dual fuel compression ignition engine. Int. J. Renew. Energy Res. 8, 2075–2084 (2018). https://www.ijrer.org/ijrer/index.php/ijrer/article/view/8377

  63. B.J. Bora, U.K. Saha, Experimental evaluation of a rice bran biodiesel-biogas run dual fuel diesel engine at varying compression ratios. Renew. Energy 87, 782–790 (2016). https://doi.org/10.1016/j.renene.2015.11.002

    Article  Google Scholar 

  64. B.J. Bora, U.K. Saha, Optimisation of injection timing and compression ratio of a raw biogas powered dual fuel diesel engine. Appl. Therm. Eng. 92, 111–121 (2016). https://doi.org/10.1016/j.applthermaleng.2015.08.111

    Article  Google Scholar 

  65. B.J. Bora, U.K. Saha, Theoretical performance limits of a biogas–diesel powered dual fuel diesel engine for different combinations of compression ratio and injection timing. ASCE J. Energy Eng. 142 (2016). https://doi.org/10.1061/(ASCE)EY.1943-7897.0000293

  66. M. Talibi, P. Hellier, N. Ladommatos, Combustion and exhaust emission characteristics, and in-cylinder gas composition, of hydrogen enriched biogas mixtures in a diesel engine. Energy 124, 397–412 (2017). https://doi.org/10.1016/j.energy.2017.02.070

    Article  Google Scholar 

  67. S. Verma, L.M. Das, S.C. Kaushik, S.K. Tyagi, An experimental investigation of exergetic performance and emission characteristics of hydrogen supplemented biogas-diesel dual fuel engine. Int. J. Hydrogen Energy 43, 2452–2468 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.032

    Article  Google Scholar 

  68. N. Khatri, K.K. Khatri, Hydrogen enrichment on diesel engine with biogas in dual fuel mode. Int. J. Hydrogen Energy 45, 7128–7140 (2020). https://doi.org/10.1016/j.ijhydene.2019.12.167

    Article  Google Scholar 

  69. K. Cacua, A. Amell, F. Cadavid, Effects of oxygen enriched air on the operation and performance of a diesel-biogas dual fuel engine. Biomass Bioenergy 45, 159–167 (2012). https://doi.org/10.1016/j.biombioe.2012.06.003

    Article  Google Scholar 

  70. M. Feroskhan, S. Ismail, M.G. Reddy, A. Sai Teja, Effects of charge preheating on the performance of a biogas-diesel dual fuel CI engine. Eng. Sci. Technol. Int. J. 21, 330–337 (2018). https://doi.org/10.1016/j.jestch.2018.04.001

  71. A. Sarkar, U.K. Saha, Role of global fuel-air equivalence ratio and preheating on the behaviour of a biogas driven dual fuel diesel engine. Fuel 232, 743–754 (2018). https://doi.org/10.1016/j.fuel.2018.06.016

    Article  Google Scholar 

  72. A.V. Prabhu, A. Avinash, K. Brindhadevi, A. Pugazhendhi, Performance and emission evaluation of dual fuel CI engine using preheated biogas-air mixture. Sci. Total Environ. 754, 142389 (2021). https://doi.org/10.1016/j.scitotenv.2020.142389

    Article  Google Scholar 

  73. M. Maizonnasse, J.S. Plante, D. Oh, C.B. Laflamme, Investigation of the degradation of a low-cost untreated biogas engine using preheated biogas with phase separation for electric power generation. Renew. Energy 55, 501–513 (2013). https://doi.org/10.1016/j.renene.2013.01.006

    Article  Google Scholar 

  74. I.D. Bedoya, A.A. Arrieta, F.J. Cadavid, Effects of mixing system and pilot fuel quality on diesel–biogas dual fuel engine performance. Biosour. Technol. 100, 6624–6629 (2009). https://doi.org/10.1016/j.biortech.2009.07.052

    Article  Google Scholar 

  75. N. Khayum, S. Anbarasu, S. Murugan, Combined effect of fuel injecting timing and nozzle opening pressure of a biogas-biodiesel fuelled diesel engine. Fuel 262, 116505 (2020). https://doi.org/10.1016/j.fuel.2019.116505

    Article  Google Scholar 

  76. I.T. Yilmaz, M. Gumus, Investigation of the effect of biogas on combustion and emissions of TBC diesel engine. Fuel 188, 69–78 (2017). https://doi.org/10.1016/j.fuel.2016.10.034

    Article  Google Scholar 

  77. F.Z. Aklouchea, K. Loubara, A. Bentebbiche, S. Awad, M. Tazerout, Predictive model of the diesel engine operating in dual-fuel mode fuelled with different gaseous fuels. Fuel 220, 599–606 (2018). https://doi.org/10.1016/j.fuel.2018.02.053

    Article  Google Scholar 

  78. R.G. Papagiannakis, D.T. Hountalas, C.D. Rakopoulos, Theoretical study of the effects of pilot fuel quantity and its injection timing on the performance and emissions of a dual fuel diesel engine. Energy Convers. Manage. 48, 2951–2961 (2007). https://doi.org/10.1016/j.enconman.2007.07.003

    Article  Google Scholar 

  79. X. Liu, H. Wang, Z. Zheng, M. Yao, Numerical investigation on the combustion and emission characteristics of a heavy-duty natural gas-diesel dual-fuel engine. Fuel 300, 120098 (2021). https://doi.org/10.1016/j.fuel.2021.120998

    Article  Google Scholar 

  80. U. Azimov, E. Tomita, N. Kawahara, Y. Harada, Premixed mixture ignition in the end-gas region (PREMIER) combustion in a natural gas dual-fuel engine: operating range and exhaust emissions. Int. J. Engine Res. 12, 484–497 (2011). https://doi.org/10.1177/1468087411409664

    Article  Google Scholar 

  81. U. Azimov, E. Tomita, N. Kawahara, Y. Harada, Effect of syngas composition on combustion and exhaust emission characteristics in a pilot-ignited dual-fuel engine operated in PREMIER combustion mode. Int. J. Hydrogen Energy 36, 11985–11996 (2011). https://doi.org/10.1016/j.ijhydene.2011.04.192

    Article  Google Scholar 

  82. U. Azimov, E. Tomita, N. Kawahara, Ignition, combustion and exhaust emission characteristics of micro-pilot ignited dual-fuel engine operated under PREMIER combustion mode. SAE Tech. Paper 2011-01-1764 (2011). https://doi.org/10.4271/2011-01-1764

  83. C. Aksu, N. Kawahara, K. Tsuboi, S. Nanba, E. Tomita, M. Kondo, Effect of hydrogen concentration on engine performance, exhaust emissions and operation range of PREMIER combustion in a dual fuel gas engine using methane-hydrogen mixtures. SAE Tech. Paper 2015-01-1792 (2015). https://doi.org/10.4271/2015-01-1792

  84. C. Aksu, N. Kawahara, K. Tsuboi, M. Kondo, E. Tomita, Extension of PREMIER combustion operation range using split micro pilot fuel injection in a dual fuel natural gas compression ignition engine: a performance-based and visual investigation. Fuel 185, 243–253 (2016). https://doi.org/10.1016/j.fuel.2016.07.120

    Article  Google Scholar 

  85. N. Kawahara, Y. Kim, H. Wadahama, K. Tsuboi, E. Tomita, Differences between PREMIER combustion in a natural gas spark-ignition engine and knocking with pressure oscillations. Proc. Combust. Inst. 37, 4983–4991 (2019). https://doi.org/10.1016/j.proci.2018.08.055

    Article  Google Scholar 

  86. A. Valipour Berenjestanaki, N. Kawahara, K. Tsuboi, E. Tomita, End-gas autoignition characteristics of PREMIER combustion in a pilot fuel-ignited dual-fuel biogas engine. Fuel 254, 115634 (2019). https://doi.org/10.1016/j.fuel.2019.115634

  87. A. Valipour Berenjestanaki, N. Kawahara, K. Tsuboi, E. Tomita, Performance, emissions and end-gas autoignition characteristics of PREMIER combustion in a pilot fuel-ignited dual-fuel biogas engine with various CO2 ratios. Fuel 286, 119330 (2021). https://doi.org/10.1016/j.fuel.2020.119330

  88. E. Tomita, N. Kawahara, J. Zheng, Visualization of auto-ignition of end gas region without knock in a spark-ignition natural gas engine. J. KONES Powertrain Transp. 17, 521–527 (2010). http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BUJ7-0018-0008

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tomita, E., Kawahara, N., Azimov, U. (2022). Combustion and Exhaust Emissions of Biogas Dual-Fuel Engines. In: Biogas Combustion Engines for Green Energy Generation. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-94538-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94538-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94537-4

  • Online ISBN: 978-3-030-94538-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics