Skip to main content

Epigenetic Epidemiology of Autism and Other Neurodevelopmental Disorders

  • Chapter
  • First Online:
Epigenetic Epidemiology

Abstract

The prevalence of neurodevelopmental disorders (NDD) has been rising gradually over the last two decades. These developmental disabilities are caused by genetic and environmental factors, reciprocally. Recent extensive epigenetic epidemiological studies suggest that epigenetic dysregulations (Epimutation) such as abnormal DNA methylation may contribute to the etiology of NDD including autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and intellectual disability (ID). Epimutations of DNA methylation and histone modification have been found in genetic loci under epigenetic regulation but also allele- or tissue-specific patterns in individuals with NDD. Epigenetic reprograming and remodeling occur from embryonic development to throughout life. Recent technical advances in epigenome-wide association studies (EGWAS) and genome-wide differentially methylated regions (DMRs) analyses have established correlations between abnormal DNA methylation and histone modification and neurodevelopmental dysfunctions. However, it remains a challenge to establish a concrete causative evidence that is implicated in the pathogenesis of NDD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5caC:

5-carboxylcytosine

5fC:

5-formylcytosine

5hmC:

5-hydroxymethylcytosine

5mC:

5-methylcytosine

ADHD:

Attention-deficit/hyperactivity disorder

ASD:

Autism spectrum disorder

CDC:

Centers for Disease Control and Prevention

CHD:

Chromodomain helicase DNA binding protein

ChIP-seq:

Chromatin immunoprecipitation sequencing

CNVs:

Copy number variants

CpG:

CG dinucleotides

DA:

Differential acetylation

DhMRs:

Differentially hydroxymethylated regions

DMRs:

Differentially methylated regions

DNMT:

DNA methyltransferase

EWAS:

Epigenome-wide association studies

GWAS:

Genome-wide associated study

HAWAS:

Histone acetylome-wide association study

ID:

Intellectual disabilities

IQ:

Intelligence quotient

KAT:

lysine acetyltransferase

KDM:

lysine demethylase

KMT:

lysine methyltransferase

NDD:

Neurodevelopmental disorders

NGS:

Next generation sequencing

PFC:

Prefrontal cortex

PTVs:

Protein-truncating variants

SAM:

S-adenylsylmethionine

SCZ:

Schizophrenia

SNP:

Single nucleotide polymorphism

SNVs:

Single nucleotide variants

TC:

Temporal cortex

TET:

Ten-eleven translocation

TSS:

transcription start sites

References

  1. America’s Children and the Environment 2013. Third Edition ed. Washington, D.C.: U.S. Environmental Protection Agency.

    Google Scholar 

  2. Tremblay MW, Jiang YH (2019) DNA methylation and susceptibility to autism Spectrum disorder. Annu Rev Med 70:151–166. https://doi.org/10.1146/annurev-med-120417-091431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. de la Torre-Ubieta L, Stein JL, Won H, Opland CK, Liang D, Lu D et al (2018) The dynamic landscape of open chromatin during human cortical neurogenesis. Cell 172(1–2):289–304 e18. https://doi.org/10.1016/j.cell.2017.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND et al (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341(6146):1237905. https://doi.org/10.1126/science.1237905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bale TL (2015) Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci 16(6):332–344. https://doi.org/10.1038/nrn3818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lamonica JM, Zhou Z (2019) Disentangling chromatin architecture to gain insights into the etiology of brain disorders. Curr Opin Genet Dev 55:76–81. https://doi.org/10.1016/j.gde.2019.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jeong H, Mendizabal I, Berto S, Chatterjee P, Layman T, Usui N et al (2021) Evolution of DNA methylation in the human brain. Nat Commun 12(1):2021. https://doi.org/10.1038/s41467-021-21917-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bludau A, Royer M, Meister G, Neumann ID, Menon R (2019) Epigenetic regulation of the social brain. Trends Neurosci 42(7):471–484. https://doi.org/10.1016/j.tins.2019.04.001

    Article  CAS  PubMed  Google Scholar 

  9. Jakovcevski M, Akbarian S (2012) Epigenetic mechanisms in neurological disease. Nat Med 18(8):1194–1204. https://doi.org/10.1038/nm.2828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17(8):487–500. https://doi.org/10.1038/nrg.2016.59

    Article  CAS  PubMed  Google Scholar 

  11. Madrid A, Papale LA, Alisch RS (2016) New hope: the emerging role of 5-hydroxymethylcytosine in mental health and disease. Epigenomics 8(7):981–991. https://doi.org/10.2217/epi-2016-0020

    Article  CAS  PubMed  Google Scholar 

  12. Kuehner JN, Bruggeman EC, Wen Z, Yao B (2019) Epigenetic regulations in neuropsychiatric disorders. Front Genet 10:268. https://doi.org/10.3389/fgene.2019.00268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38(1):23–38. https://doi.org/10.1038/npp.2012.112

    Article  CAS  PubMed  Google Scholar 

  14. Maenner MJ, Shaw KA, Baio J, Washington A, Patrick M et al (eds) (2020) Prevalence of autism Spectrum disorder among children aged 8 years – autism and developmental disabilities monitoring network, 11 sites, United States, 2016. MMWR Surveill Summ 69(4):1–12. https://doi.org/10.15585/mmwr.ss6904a1

  15. Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z et al (2018) Prevalence of autism Spectrum disorder among children aged 8 years – autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill Summ 67(6):1–23. https://doi.org/10.15585/mmwr.ss6706a1

    Article  PubMed  PubMed Central  Google Scholar 

  16. Folstein SE, Rosen-Sheidley B (2001) Genetics of autism: complex aetiology for a heterogeneous disorder. Nat Rev Genet 2(12):943–955. https://doi.org/10.1038/35103559

    Article  CAS  PubMed  Google Scholar 

  17. Jiang YH, Wang Y, Xiu X, Choy KW, Pursley AN, Cheung SW (2014) Genetic diagnosis of autism spectrum disorders: the opportunity and challenge in the genomics era. Crit Rev Clin Lab Sci 51(5):249–262. https://doi.org/10.3109/10408363.2014.910747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Willsey AJ, State MW (2015) Autism spectrum disorders: from genes to neurobiology. Curr Opin Neurobiol 30:92–99. https://doi.org/10.1016/j.conb.2014.10.015

    Article  CAS  PubMed  Google Scholar 

  19. Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D et al (2014) The contribution of de novo coding mutations to autism spectrum disorder. Nature 515(7526):216–221. https://doi.org/10.1038/nature13908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE et al (2014) Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515(7526):209–215. https://doi.org/10.1038/nature13772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY et al (2020) Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180(3):568–84 e23. https://doi.org/10.1016/j.cell.2019.12.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Buxbaum JD, Daly MJ, Devlin B, Lehner T, Roeder K, State MW et al (2012) The autism sequencing consortium: large-scale, high-throughput sequencing in autism spectrum disorders. Neuron 76(6):1052–1056. https://doi.org/10.1016/j.neuron.2012.12.008

    Article  CAS  PubMed  Google Scholar 

  23. Neale BM, Kou Y, Liu L, Ma’ayan A, Samocha KE, Sabo A et al (2012) Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485(7397):242–245. https://doi.org/10.1038/nature11011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S et al (2011) Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 43(6):585–589. https://doi.org/10.1038/ng.835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP et al (2012) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485(7397):246–250. https://doi.org/10.1038/nature10989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ et al (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485(7397):237–241. https://doi.org/10.1038/nature10945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J et al (2012) De novo gene disruptions in children on the autistic spectrum. Neuron 74(2):285–299. https://doi.org/10.1016/j.neuron.2012.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tran NQV, Miyake K (2017) Neurodevelopmental disorders and environmental toxicants: epigenetics as an underlying mechanism. Int J Genomics 2017:7526592. https://doi.org/10.1155/2017/7526592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Duffney LJ, Valdez P, Tremblay MW, Cao X, Montgomery S, McConkie-Rosell A et al (2018) Epigenetics and autism spectrum disorder: a report of an autism case with mutation in H1 linker histone HIST1H1E and literature review. Am J Med Genet B Neuropsychiatr Genet 177(4):426–433. https://doi.org/10.1002/ajmg.b.32631

    Article  PubMed  PubMed Central  Google Scholar 

  30. Keil KP, Lein PJ (2016) DNA methylation: a mechanism linking environmental chemical exposures to risk of autism spectrum disorders? Environ Epigenet 2(1). https://doi.org/10.1093/eep/dvv012

  31. Goodman SJ, Burton CL, Butcher DT, Siu MT, Lemire M, Chater-Diehl E et al (2020) Obsessive-compulsive disorder and attention-deficit/hyperactivity disorder: distinct associations with DNA methylation and genetic variation. J Neurodev Disord 12(1):23. https://doi.org/10.1186/s11689-020-09324-3

    Article  PubMed  PubMed Central  Google Scholar 

  32. Thapar A, Stergiakouli E (2008) An overview on the genetics of ADHD. Xin Li Xue Bao 40(10):1088–1098. https://doi.org/10.3724/SP.J.1041.2008.01088

    Article  PubMed  PubMed Central  Google Scholar 

  33. Neumann A, Walton E, Alemany S, Cecil C, Gonzalez JR, Jima DD et al (2020) Association between DNA methylation and ADHD symptoms from birth to school age: a prospective meta-analysis. Transl Psychiatry 10(1):398. https://doi.org/10.1038/s41398-020-01058-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marceau K, Cinnamon Bidwell L, Karoly HC, Evans AS, Todorov AA, Palmer RH et al (2018) Within-family effects of smoking during pregnancy on ADHD: the importance of phenotype. J Abnorm Child Psychol 46(4):685–699. https://doi.org/10.1007/s10802-017-0320-7

    Article  PubMed  PubMed Central  Google Scholar 

  35. Daneshparvar M, Mostafavi SA, Zare Jeddi M, Yunesian M, Mesdaghinia A, Mahvi AH et al (2016) The role of Lead exposure on attention-deficit/ hyperactivity disorder in children: a systematic review. Iran J Psychiatry 11(1):1–14

    PubMed  PubMed Central  Google Scholar 

  36. van Bokhoven H (2011) Genetic and epigenetic networks in intellectual disabilities. Annu Rev Genet 45:81–104. https://doi.org/10.1146/annurev-genet-110410-132512

    Article  CAS  PubMed  Google Scholar 

  37. Jin P, Warren ST (2000) Understanding the molecular basis of fragile X syndrome. Hum Mol Genet 9(6):901–908. https://doi.org/10.1093/hmg/9.6.901

    Article  CAS  PubMed  Google Scholar 

  38. Sajan SA, Jhangiani SN, Muzny DM, Gibbs RA, Lupski JR, Glaze DG et al (2017) Enrichment of mutations in chromatin regulators in people with Rett syndrome lacking mutations in MECP2. Genet Med 19(1):13–19. https://doi.org/10.1038/gim.2016.42

    Article  PubMed  Google Scholar 

  39. Brasa S, Mueller A, Jacquemont S, Hahne F, Rozenberg I, Peters T et al (2016) Reciprocal changes in DNA methylation and hydroxymethylation and a broad repressive epigenetic switch characterize FMR1 transcriptional silencing in fragile X syndrome. Clin Epigenetics 8:15. https://doi.org/10.1186/s13148-016-0181-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van Bokhoven H, Kramer JM (2010) Disruption of the epigenetic code: an emerging mechanism in mental retardation. Neurobiol Dis 39(1):3–12. https://doi.org/10.1016/j.nbd.2010.03.010

    Article  CAS  PubMed  Google Scholar 

  41. Inlow JK, Restifo LL (2004) Molecular and comparative genetics of mental retardation. Genetics 166(2):835–881. https://doi.org/10.1534/genetics.166.2.835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ilyas M, Mir A, Efthymiou S, Houlden H (2020) The genetics of intellectual disability: advancing technology and gene editing. F1000Res 9. https://doi.org/10.12688/f1000research.16315.1

  43. Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18(9):517–534. https://doi.org/10.1038/nrg.2017.33

    Article  CAS  PubMed  Google Scholar 

  44. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21. https://doi.org/10.1101/gad.947102

    Article  CAS  PubMed  Google Scholar 

  45. Mentch SJ, Locasale JW (2016) One-carbon metabolism and epigenetics: understanding the specificity. Ann N Y Acad Sci 1363:91–98. https://doi.org/10.1111/nyas.12956

    Article  CAS  PubMed  Google Scholar 

  46. Lyko F (2018) The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet 19(2):81–92. https://doi.org/10.1038/nrg.2017.80

    Article  CAS  PubMed  Google Scholar 

  47. Cortellino S, Xu J, Sannai M, Moore R, Caretti E, Cigliano A et al (2011) Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146(1):67–79. https://doi.org/10.1016/j.cell.2011.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11(9):607–620. https://doi.org/10.1038/nrm2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen T, Li E (2004) Structure and function of eukaryotic DNA methyltransferases. Curr Top Dev Biol 60:55–89. https://doi.org/10.1016/S0070-2153(04)60003-2

    Article  CAS  PubMed  Google Scholar 

  50. Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S et al (2017) Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 356(6337). https://doi.org/10.1126/science.aaj2239

  51. Lorincz MC, Dickerson DR, Schmitt M, Groudine M (2004) Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol 11(11):1068–1075. https://doi.org/10.1038/nsmb840

    Article  CAS  PubMed  Google Scholar 

  52. Shi DQ, Ali I, Tang J, Yang WC (2017) New insights into 5hmC DNA modification: generation. Distribution and Function Front Genet 8:100. https://doi.org/10.3389/fgene.2017.00100

    Article  CAS  PubMed  Google Scholar 

  53. Liu Y, Hu Z, Cheng J, Siejka-Zielinska P, Chen J, Inoue M et al (2021) Subtraction-free and bisulfite-free specific sequencing of 5-methylcytosine and its oxidized derivatives at base resolution. Nat Commun 12(1):618. https://doi.org/10.1038/s41467-021-20920-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Luo GZ, Blanco MA, Greer EL, He C, Shi Y (2015) DNA N(6)-methyladenine: a new epigenetic mark in eukaryotes? Nat Rev Mol Cell Biol 16(12):705–710. https://doi.org/10.1038/nrm4076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cao Z, Zhou N, Zhang Y, Zhang Y, Wu R, Li Y et al (2014) Dynamic reprogramming of 5-hydroxymethylcytosine during early porcine embryogenesis. Theriogenology 81(3):496–508. https://doi.org/10.1016/j.theriogenology.2013.10.025

    Article  CAS  PubMed  Google Scholar 

  56. Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD et al (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 13(4):423–430. https://doi.org/10.1038/nn.2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M et al (2011) 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2:241. https://doi.org/10.1038/ncomms1240

    Article  CAS  PubMed  Google Scholar 

  58. Szwagierczak A, Bultmann S, Schmidt CS, Spada F, Leonhardt H (2010) Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res 38(19):e181. https://doi.org/10.1093/nar/gkq684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14(1):R47–R58. https://doi.org/10.1093/hmg/ddi114

    Article  CAS  PubMed  Google Scholar 

  60. Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2(1):21–32. https://doi.org/10.1038/35047554

    Article  CAS  PubMed  Google Scholar 

  61. Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W et al (2011) The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477(7366):606–610. https://doi.org/10.1038/nature10443

    Article  CAS  PubMed  Google Scholar 

  62. von Meyenn F, Iurlaro M, Habibi E, Liu NQ, Salehzadeh-Yazdi A, Santos F et al (2016) Impairment of DNA methylation maintenance is the Main cause of global demethylation in naive embryonic stem cells. Mol Cell 62(6):848–861. https://doi.org/10.1016/j.molcel.2016.04.025

    Article  CAS  Google Scholar 

  63. Beck DB, Petracovici A, He C, Moore HW, Louie RJ, Ansar M et al (2020) Delineation of a human Mendelian disorder of the DNA demethylation machinery: TET3 deficiency. Am J Hum Genet 106(2):234–245. https://doi.org/10.1016/j.ajhg.2019.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhubi A, Chen Y, Dong E, Cook EH, Guidotti A, Grayson DR (2014) Increased binding of MeCP2 to the GAD1 and RELN promoters may be mediated by an enrichment of 5-hmC in autism spectrum disorder (ASD) cerebellum. Transl Psychiatry 4:e349. https://doi.org/10.1038/tp.2013.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cukier HN, Rabionet R, Konidari I, Rayner-Evans MY, Baltos ML, Wright HH et al (2010) Novel variants identified in methyl-CpG-binding domain genes in autistic individuals. Neurogenetics 11(3):291–303. https://doi.org/10.1007/s10048-009-0228-7

    Article  CAS  PubMed  Google Scholar 

  66. Talkowski ME, Mullegama SV, Rosenfeld JA, van Bon BW, Shen Y, Repnikova EA et al (2011) Assessment of 2q23.1 microdeletion syndrome implicates MBD5 as a single causal locus of intellectual disability, epilepsy, and autism spectrum disorder. Am J Hum Genet 89(4):551–563. https://doi.org/10.1016/j.ajhg.2011.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Iossifov I, Levy D, Allen J, Ye K, Ronemus M, Lee YH et al (2015) Low load for disruptive mutations in autism genes and their biased transmission. Proc Natl Acad Sci U S A 112(41):E5600–E5607. https://doi.org/10.1073/pnas.1516376112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang T, Guo H, Xiong B, Stessman HA, Wu H, Coe BP et al (2016) De novo genic mutations among a Chinese autism spectrum disorder cohort. Nat Commun 7:13316. https://doi.org/10.1038/ncomms13316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. RK CY, Merico D, Bookman M, JLH, Thiruvahindrapuram B, Patel RV, et al (2017) Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci 20(4):602–611. https://doi.org/10.1038/nn.4524

    Article  CAS  Google Scholar 

  70. Stessman HA, Xiong B, Coe BP, Wang T, Hoekzema K, Fenckova M et al (2017) Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat Genet 49(4):515–526. https://doi.org/10.1038/ng.3792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA et al (2013) Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 155(5):997–1007. https://doi.org/10.1016/j.cell.2013.10.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Alvarez-Mora MI, Calvo Escalona R, Puig Navarro O, Madrigal I, Quintela I, Amigo J et al (2016) Comprehensive molecular testing in patients with high functioning autism spectrum disorder. Mutat Res 784–785:46–52. https://doi.org/10.1016/j.mrfmmm.2015.12.006

    Article  CAS  PubMed  Google Scholar 

  73. Talkowski ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A et al (2012) Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 149(3):525–537. https://doi.org/10.1016/j.cell.2012.03.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kleefstra T, Brunner HG, Amiel J, Oudakker AR, Nillesen WM, Magee A et al (2006) Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am J Hum Genet 79(2):370–377. https://doi.org/10.1086/505693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jiang YH, Yuen RK, Jin X, Wang M, Chen N, Wu X et al (2013) Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am J Hum Genet 93(2):249–263. https://doi.org/10.1016/j.ajhg.2013.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Balan S, Iwayama Y, Maekawa M, Toyota T, Ohnishi T, Toyoshima M et al (2014) Exon resequencing of H3K9 methyltransferase complex genes, EHMT1, EHTM2 and WIZ, in Japanese autism subjects. Mol Autism 5(1):49. https://doi.org/10.1186/2040-2392-5-49

    Article  PubMed  PubMed Central  Google Scholar 

  77. Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L et al (2014) Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet 94(5):677–694. https://doi.org/10.1016/j.ajhg.2014.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. (2015) Deciphering developmental disorders S. large-scale discovery of novel genetic causes of developmental disorders. Nature 519(7542):223–228. https://doi.org/10.1038/nature14135

  79. Krumm N, Turner TN, Baker C, Vives L, Mohajeri K, Witherspoon K et al (2015) Excess of rare, inherited truncating mutations in autism. Nat Genet 47(6):582–588. https://doi.org/10.1038/ng.3303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lim ET, Uddin M, De Rubeis S, Chan Y, Kamumbu AS, Zhang X et al (2017) Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder. Nat Neurosci 20(9):1217–1224. https://doi.org/10.1038/nn.4598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen R, Davis LK, Guter S, Wei Q, Jacob S, Potter MH et al (2017) Leveraging blood serotonin as an endophenotype to identify de novo and rare variants involved in autism. Mol Autism 8:14. https://doi.org/10.1186/s13229-017-0130-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Toma C, Hervas A, Torrico B, Balmana N, Salgado M, Maristany M et al (2013) Analysis of two language-related genes in autism: a case-control association study of FOXP2 and CNTNAP2. Psychiatr Genet 23(2):82–85. https://doi.org/10.1097/YPG.0b013e32835d6fc6

    Article  CAS  PubMed  Google Scholar 

  83. Adegbola A, Gao H, Sommer S, Browning M (2008) A novel mutation in JARID1C/SMCX in a patient with autism spectrum disorder (ASD). Am J Med Genet A 146A(4):505–511. https://doi.org/10.1002/ajmg.a.32142

    Article  CAS  PubMed  Google Scholar 

  84. Li J, Wang L, Guo H, Shi L, Zhang K, Tang M et al (2017) Targeted sequencing and functional analysis reveal brain-size-related genes and their networks in autism spectrum disorders. Mol Psychiatry 22(9):1282–1290. https://doi.org/10.1038/mp.2017.140

    Article  CAS  PubMed  Google Scholar 

  85. Doan RN, Bae BI, Cubelos B, Chang C, Hossain AA, Al-Saad S et al (2016) Mutations in human accelerated regions disrupt cognition and social behavior. Cell 167(2):341–54 e12. https://doi.org/10.1016/j.cell.2016.08.071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. D’Gama AM, Pochareddy S, Li M, Jamuar SS, Reiff RE, Lam AN et al (2015) Targeted DNA sequencing from autism Spectrum disorder brains implicates multiple genetic mechanisms. Neuron 88(5):910–917. https://doi.org/10.1016/j.neuron.2015.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jiang YH, Sahoo T, Michaelis RC, Bercovich D, Bressler J, Kashork CD et al (2004) A mixed epigenetic/genetic model for oligogenic inheritance of autism with a limited role for UBE3A. Am J Med Genet A 131(1):1–10. https://doi.org/10.1002/ajmg.a.30297

    Article  PubMed  Google Scholar 

  88. Nagarajan RP, Patzel KA, Martin M, Yasui DH, Swanberg SE, Hertz-Picciotto I et al (2008) MECP2 promoter methylation and X chromosome inactivation in autism. Autism Res 1(3):169–178. https://doi.org/10.1002/aur.24

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wong CC, Meaburn EL, Ronald A, Price TS, Jeffries AR, Schalkwyk LC et al (2014) Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits. Mol Psychiatry 19(4):495–503. https://doi.org/10.1038/mp.2013.41

    Article  CAS  PubMed  Google Scholar 

  90. Gregory SG, Connelly JJ, Towers AJ, Johnson J, Biscocho D, Markunas CA et al (2009) Genomic and epigenetic evidence for oxytocin receptor deficiency in autism. BMC Med 7:62. https://doi.org/10.1186/1741-7015-7-62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Labouesse MA, Dong E, Grayson DR, Guidotti A, Meyer U (2015) Maternal immune activation induces GAD1 and GAD2 promoter remodeling in the offspring prefrontal cortex. Epigenetics 10(12):1143–1155. https://doi.org/10.1080/15592294.2015.1114202

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hogart A, Leung KN, Wang NJ, Wu DJ, Driscoll J, Vallero RO et al (2009) Chromosome 15q11-13 duplication syndrome brain reveals epigenetic alterations in gene expression not predicted from copy number. J Med Genet 46(2):86–93. https://doi.org/10.1136/jmg.2008.061580

    Article  CAS  PubMed  Google Scholar 

  93. Lintas C, Sacco R, Persico AM (2016) Differential methylation at the RELN gene promoter in temporal cortex from autistic and typically developing post-puberal subjects. J Neurodev Disord 8:18. https://doi.org/10.1186/s11689-016-9151-z

    Article  PubMed  PubMed Central  Google Scholar 

  94. Homs A, Codina-Sola M, Rodriguez-Santiago B, Villanueva CM, Monk D, Cusco I et al (2016) Genetic and epigenetic methylation defects and implication of the ERMN gene in autism spectrum disorders. Transl Psychiatry 6(7):e855. https://doi.org/10.1038/tp.2016.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. James SJ, Shpyleva S, Melnyk S, Pavliv O, Pogribny IP (2014) Elevated 5-hydroxymethylcytosine in the Engrailed-2 (EN-2) promoter is associated with increased gene expression and decreased MeCP2 binding in autism cerebellum. Transl Psychiatry 4:e460. https://doi.org/10.1038/tp.2014.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhu L, Wang X, Li XL, Towers A, Cao X, Wang P et al (2014) Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders. Hum Mol Genet 23(6):1563–1578. https://doi.org/10.1093/hmg/ddt547

    Article  CAS  PubMed  Google Scholar 

  97. Maunakea AK, Chepelev I, Cui K, Zhao K (2013) Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res 23(11):1256–1269. https://doi.org/10.1038/cr.2013.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Neri F, Rapelli S, Krepelova A, Incarnato D, Parlato C, Basile G et al (2017) Intragenic DNA methylation prevents spurious transcription initiation. Nature 543(7643):72–77. https://doi.org/10.1038/nature21373

    Article  CAS  PubMed  Google Scholar 

  99. Lev Maor G, Yearim A, Ast G (2015) The alternative role of DNA methylation in splicing regulation. Trends Genet 31(5):274–280. https://doi.org/10.1016/j.tig.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  100. Quesnel-Vallieres M, Dargaei Z, Irimia M, Gonatopoulos-Pournatzis T, Ip JY, Wu M et al (2016) Misregulation of an activity-dependent splicing network as a common mechanism underlying autism Spectrum disorders. Mol Cell 64(6):1023–1034. https://doi.org/10.1016/j.molcel.2016.11.033

    Article  CAS  PubMed  Google Scholar 

  101. Irimia M, Weatheritt RJ, Ellis JD, Parikshak NN, Gonatopoulos-Pournatzis T, Babor M et al (2014) A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell 159(7):1511–1523. https://doi.org/10.1016/j.cell.2014.11.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li Q, Lee JA, Black DL (2007) Neuronal regulation of alternative pre-mRNA splicing. Nat Rev Neurosci 8(11):819–831. https://doi.org/10.1038/nrn2237

    Article  CAS  PubMed  Google Scholar 

  103. Vuong CK, Black DL, Zheng S (2016) The neurogenetics of alternative splicing. Nat Rev Neurosci 17(5):265–281. https://doi.org/10.1038/nrn.2016.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Andrews SV, Ellis SE, Bakulski KM, Sheppard B, Croen LA, Hertz-Picciotto I et al (2017) Cross-tissue integration of genetic and epigenetic data offers insight into autism spectrum disorder. Nat Commun 8(1):1011. https://doi.org/10.1038/s41467-017-00868-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tsang SY, Ahmad T, Mat FW, Zhao C, Xiao S, Xia K et al (2016) Variation of global DNA methylation levels with age and in autistic children. Hum Genomics 10(1):31. https://doi.org/10.1186/s40246-016-0086-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liang S, Li Z, Wang Y, Li X, Yang X, Zhan X et al (2019) Genome-wide DNA methylation analysis reveals epigenetic pattern of SH2B1 in Chinese monozygotic twins discordant for autism Spectrum disorder. Front Neurosci 13:712. https://doi.org/10.3389/fnins.2019.00712

    Article  PubMed  PubMed Central  Google Scholar 

  107. Feinberg JI, Bakulski KM, Jaffe AE, Tryggvadottir R, Brown SC, Goldman LR et al (2015) Paternal sperm DNA methylation associated with early signs of autism risk in an autism-enriched cohort. Int J Epidemiol 44(4):1199–1210. https://doi.org/10.1093/ije/dyv028

    Article  PubMed  PubMed Central  Google Scholar 

  108. Schroeder DI, Schmidt RJ, Crary-Dooley FK, Walker CK, Ozonoff S, Tancredi DJ et al (2016) Placental methylome analysis from a prospective autism study. Mol Autism 7:51. https://doi.org/10.1186/s13229-016-0114-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wong CCY, Smith RG, Hannon E, Ramaswami G, Parikshak NN, Assary E et al (2019) Genome-wide DNA methylation profiling identifies convergent molecular signatures associated with idiopathic and syndromic autism in post-mortem human brain tissue. Hum Mol Genet 28(13):2201–2211. https://doi.org/10.1093/hmg/ddz052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nardone S, Sams DS, Zito A, Reuveni E, Elliott E (2017) Dysregulation of cortical neuron DNA methylation profile in autism Spectrum disorder. Cereb Cortex 27(12):5739–5754. https://doi.org/10.1093/cercor/bhx250

    Article  PubMed  PubMed Central  Google Scholar 

  111. Cheng Y, Li Z, Manupipatpong S, Lin L, Li X, Xu T et al (2018) 5-Hydroxymethylcytosine alterations in the human postmortem brains of autism spectrum disorder. Hum Mol Genet 27(17):2955–2964. https://doi.org/10.1093/hmg/ddy193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang T, Pan Q, Lin L, Szulwach KE, Song CX, He C et al (2012) Genome-wide DNA hydroxymethylation changes are associated with neurodevelopmental genes in the developing human cerebellum. Hum Mol Genet 21(26):5500–5510. https://doi.org/10.1093/hmg/dds394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Corley MJ, Vargas-Maya N, Pang APS, Lum-Jones A, Li D, Khadka V et al (2019) Epigenetic delay in the neurodevelopmental trajectory of DNA methylation states in autism Spectrum disorders. Front Genet 10:907. https://doi.org/10.3389/fgene.2019.00907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23(15):5293–5300. https://doi.org/10.1128/MCB.23.15.5293-5300.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7(8):847–854. https://doi.org/10.1038/nn1276

    Article  CAS  PubMed  Google Scholar 

  116. Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A 104(32):13056–13061. https://doi.org/10.1073/pnas.0703739104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ruiz-Hernandez A, Kuo CC, Rentero-Garrido P, Tang WY, Redon J, Ordovas JM et al (2015) Environmental chemicals and DNA methylation in adults: a systematic review of the epidemiologic evidence. Clin Epigenetics 7:55. https://doi.org/10.1186/s13148-015-0055-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sharp GC, Salas LA, Monnereau C, Allard C, Yousefi P, Everson TM et al (2017) Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: findings from the pregnancy and childhood epigenetics (PACE) consortium. Hum Mol Genet 26(20):4067–4085. https://doi.org/10.1093/hmg/ddx290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Maccani JZ, Maccani MA (2015) Altered placental DNA methylation patterns associated with maternal smoking: current perspectives. Adv Genomics Genet 2015(5):205–214. https://doi.org/10.2147/AGG.S61518

    Article  PubMed  PubMed Central  Google Scholar 

  120. McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonte B, Szyf M et al (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12(3):342–348. https://doi.org/10.1038/nn.2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Willcutt EG (2012) The prevalence of DSM-IV attention-deficit/hyperactivity disorder: a meta-analytic review. Neurotherapeutics 9(3):490–499. https://doi.org/10.1007/s13311-012-0135-8

    Article  PubMed  PubMed Central  Google Scholar 

  122. Novik TS, Hervas A, Ralston SJ, Dalsgaard S, Rodrigues Pereira R, Lorenzo MJ et al (2006) Influence of gender on attention-deficit/hyperactivity disorder in Europe – ADORE. Eur Child Adolesc Psychiatry 15(Suppl 1):I15–I24. https://doi.org/10.1007/s00787-006-1003-z

    Article  PubMed  Google Scholar 

  123. Caci H, Asherson P, Donfrancesco R, Faraone SV, Hervas A, Fitzgerald M et al (2015) Daily life impairments associated with childhood/adolescent attention-deficit/hyperactivity disorder as recalled by adults: results from the European lifetime impairment survey. CNS Spectr 20(2):112–121. https://doi.org/10.1017/S1092852914000078

    Article  PubMed  Google Scholar 

  124. Gervin K, Nordeng H, Ystrom E, Reichborn-Kjennerud T, Lyle R (2017) Long-term prenatal exposure to paracetamol is associated with DNA methylation differences in children diagnosed with ADHD. Clin Epigenetics 9:77. https://doi.org/10.1186/s13148-017-0376-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mill J, Petronis A (2008) Pre- and peri-natal environmental risks for attention-deficit hyperactivity disorder (ADHD): the potential role of epigenetic processes in mediating susceptibility. J Child Psychol Psychiatry 49(10):1020–1030. https://doi.org/10.1111/j.1469-7610.2008.01909.x

    Article  PubMed  Google Scholar 

  126. Wilmot B, Fry R, Smeester L, Musser ED, Mill J, Nigg JT (2016) Methylomic analysis of salivary DNA in childhood ADHD identifies altered DNA methylation in VIPR2. J Child Psychol Psychiatry 57(2):152–160. https://doi.org/10.1111/jcpp.12457

    Article  PubMed  Google Scholar 

  127. Meijer M, Klein M, Hannon E, van der Meer D, Hartman C, Oosterlaan J et al (2020) Genome-wide DNA methylation patterns in persistent attention-deficit/hyperactivity disorder and in association with impulsive and callous traits. Front Genet 11:16. https://doi.org/10.3389/fgene.2020.00016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Weiss AL, Meijer M, Budeus B, Pauper M, Hakobjan M, Groothuismink J et al (2021) DNA methylation associated with persistent ADHD suggests TARBP1 as novel candidate. Neuropharmacology 184:108370. https://doi.org/10.1016/j.neuropharm.2020.108370

    Article  CAS  PubMed  Google Scholar 

  129. Miyake K, Miyashita C, Ikeda-Araki A, Miura R, Itoh S, Yamazaki K et al (2021) DNA methylation of GFI1 as a mediator of the association between prenatal smoking exposure and ADHD symptoms at 6 years: the Hokkaido study on environment and Children’s health. Clin Epigenetics 13(1):74. https://doi.org/10.1186/s13148-021-01063-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rijlaarsdam J, Cecil CA, Walton E, Mesirow MS, Relton CL, Gaunt TR et al (2017) Prenatal unhealthy diet, insulin-like growth factor 2 gene (IGF2) methylation, and attention deficit hyperactivity disorder symptoms in youth with early-onset conduct problems. J Child Psychol Psychiatry 58(1):19–27. https://doi.org/10.1111/jcpp.12589

    Article  PubMed  Google Scholar 

  131. Park S, Lee JM, Kim JW, Cho DY, Yun HJ, Han DH et al (2015) Associations between serotonin transporter gene (SLC6A4) methylation and clinical characteristics and cortical thickness in children with ADHD. Psychol Med 45(14):3009–3017. https://doi.org/10.1017/S003329171500094X

    Article  CAS  PubMed  Google Scholar 

  132. Thurm A, Farmer C, Salzman E, Lord C, Bishop S (2019) State of the field: differentiating intellectual disability from autism Spectrum disorder. Front Psychiatry 10:526. https://doi.org/10.3389/fpsyt.2019.00526

    Article  PubMed  PubMed Central  Google Scholar 

  133. Aspromonte MC, Bellini M, Gasparini A, Carraro M, Bettella E, Polli R et al (2019) Characterization of intellectual disability and autism comorbidity through gene panel sequencing. Hum Mutat 40(9):1346–1363. https://doi.org/10.1002/humu.23822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Krzyzewska IM, Maas SM, Henneman P, Lip KVD, Venema A, Baranano K et al (2019) A genome-wide DNA methylation signature for SETD1B-related syndrome. Clin Epigenetics 11(1):156. https://doi.org/10.1186/s13148-019-0749-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zaghi M, Broccoli V, Sessa A (2019) H3K36 methylation in neural development and associated diseases. Front Genet 10:1291. https://doi.org/10.3389/fgene.2019.01291

    Article  CAS  PubMed  Google Scholar 

  136. Sun W, Poschmann J, Cruz-Herrera Del Rosario R, Parikshak NN, Hajan HS, Kumar V et al (2016) Histone Acetylome-wide association study of autism Spectrum disorder. Cell 167(5):1385–97 e11. https://doi.org/10.1016/j.cell.2016.10.031

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Hui Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, S.E., Jiang, YH. (2022). Epigenetic Epidemiology of Autism and Other Neurodevelopmental Disorders. In: Michels, K.B. (eds) Epigenetic Epidemiology. Springer, Cham. https://doi.org/10.1007/978-3-030-94475-9_17

Download citation

Publish with us

Policies and ethics