Skip to main content

Asthma Epigenetics: Elucidating an Expanding Paradigm

  • Chapter
  • First Online:
Epigenetic Epidemiology
  • 999 Accesses

Abstract

This chapter will cover key concepts related to epigenetic regulation of asthma and the disease’s environmental triggers, development, underlying immune pathways, and clinical course. Recent studies that include epigenetic mediation of the effects of exposures on risk factors on asthma will be stressed. Epigenetic regulation of asthma treatments and patient responses to interventions will be described. Among these topics, emphasis will be placed on the time windows of susceptibility. In general, this review suggests that despite continuing progress in this field, further rigorous studies of epigenetic mechanisms in asthma and its management are needed. Future studies may consider the temporality and duration of epigenetic regulation to strengthen the evolving understandings of epigenetics in asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACT:

Asthma Control Test

AEC:

Airway epithelial cells

ASMC:

Airway smooth muscle cell

Aza:

5-aza-2′-deoxycytidine

BBP:

Butyl benzyl phthalate

BMI:

Body mass index

CANDLE:

Conditions Affecting Neurocognitive Development and Learning in Early Childhood Study

Der p :

Dermatophagoides pteronyssinus

DMR:

Differentially methylated region

EPIC:

European Prospective Investigation into Cancer and Nutrition

eQTM:

Expression Quantitative Trait Methylation

FEF:

Forced expiratory flow

FeNO:

Fractional exhaled nitric oxide

FEV1:

Forced expiratory volume in one second

FVC:

Forced vital capacity

H3K27me3:

H3 lysine 27 tri-methylation

IQR:

Interquartile range

IT:

Immunotherapy

LSC-R:

Life Stressor Checklist-Revised survey

miRNA:

MicroRNA

mMRC:

Modified Medical Research Council

NEC:

Nasal epithelial cells

OC:

Organic carbon

PACE:

Pregnancy and Childhood Epigenetics Consortium

PAH:

Polycyclic aromatic hydrocarbon

PBMC:

Peripheral blood mononuclear cell

PM10:

Coarse particulate matter

PM2.5:

Fine particulate matter

PSQ:

Perceived stress questionnaire

PUFA:

Polyunsaturated fatty acids

ROC:

Receiver operating characteristic

scaRNA:

Small Cajal body RNA

snoRNA:

Small nucleolar RNA

SNP:

Single-nucleotide polymorphism

Th:

T-helper

WGCNA:

Weighted gene correlation network analysis

α-SMA:

α-smooth muscle actin

References

  1. Rappaport SM (2016) Genetic factors are not the major causes of chronic diseases. PLoS One 11(4):e0154387. https://doi.org/10.1371/journal.pone.0154387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aravamudan B, Thompson M, Sieck GC, Vassallo R, Pabelick CM, Prakash YS (2017) Functional effects of cigarette smoke-induced changes in airway smooth muscle mitochondrial morphology. J Cell Physiol 232(5):1053–1068. https://doi.org/10.1002/jcp.25508

    Article  CAS  PubMed  Google Scholar 

  3. Cayrol C, Duval A, Schmitt P, Roga S, Camus M, Stella A, Burlet-Schiltz O, Gonzalez-de-Peredo A, Girard JP (2018) Environmental allergens induce allergic inflammation through proteolytic maturation of IL-33. Nat Immunol 19(4):375–385. https://doi.org/10.1038/s41590-018-0067-5

    Article  CAS  PubMed  Google Scholar 

  4. Cho YJ, Park SB, Park JW, Oh SR, Han M (2018) Bisphenol A modulates inflammation and proliferation pathway in human endometrial stromal cells by inducing oxidative stress. Reprod Toxicol 81:41–49. https://doi.org/10.1016/j.reprotox.2018.06.016

    Article  CAS  PubMed  Google Scholar 

  5. Hrusch CL, Stein MM, Gozdz J, Holbreich M, von Mutius E, Vercelli D, Ober C, Sperling AI (2019) T-cell phenotypes are associated with serum IgE levels in Amish and Hutterite children. J Allergy Clin Immunol 144(5):1391–1401. https://doi.org/10.1016/j.jaci.2019.07.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Munakata S, Ishimori K, Kitamura N, Ishikawa S, Takanami Y, Ito S (2018) Oxidative stress responses in human bronchial epithelial cells exposed to cigarette smoke and vapor from tobacco- and nicotine-containing products. Regul Toxicol Pharmacol 99:122–128. https://doi.org/10.1016/j.yrtph.2018.09.009

    Article  CAS  PubMed  Google Scholar 

  7. Szoka P, Lachowicz J, Cwiklińska M, Lukaszewicz A, Rybak A, Baranowska U, Holownia A (2019) Cigarette smoke-induced oxidative stress and autophagy in human alveolar epithelial cell line (A549 cells). Adv Exp Med Biol 1176:63–69. https://doi.org/10.1007/5584_2019_373

    Article  CAS  PubMed  Google Scholar 

  8. Schoos A-MM, Jelding-Dannemand E, Stokholm J, Bønnelykke K, Bisgaard H, Chawes BL (2019) Single and multiple time-point allergic sensitization during childhood and risk of asthma by age 13. Pediatr Allergy Immunol 30(7):716–723. https://doi.org/10.1111/pai.13109

    Article  PubMed  Google Scholar 

  9. Matsui EC, Perzanowski M, Peng RD, Wise RA, Balcer-Whaley S, Newman M, Cunningham A, Divjan A, Bollinger ME, Zhai S, Chew G, Miller RL, Phipatanakul W (2017) Effect of an integrated pest management intervention on asthma symptoms among mouse-sensitized children and adolescents with asthma: a randomized clinical trial. JAMA 317(10):1027–1036. https://doi.org/10.1001/jama.2016.21048

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wu X, Huang Q, Javed R, Zhong J, Gao H, Liang H (2019) Effect of tobacco smoking on the epigenetic age of human respiratory organs. Clin Epigenetics 11(1):183. https://doi.org/10.1186/s13148-019-0777-z

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kingsley SL, Eliot MN, Whitsel EA, Huang YT, Kelsey KT, Marsit CJ, Wellenius GA (2016) Maternal residential proximity to major roadways, birth weight, and placental DNA methylation. Environ Int 92–93:43–49. https://doi.org/10.1016/j.envint.2016.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Commodore A, Mukherjee N, Chung D, Svendsen E, Vena J, Pearce J, Roberts J, Arshad SH, Karmaus W (2018) Frequency of heavy vehicle traffic and association with DNA methylation at age 18 years in a subset of the Isle of Wight birth cohort. Environ Epigenet 4(4):dvy028. https://doi.org/10.1093/eep/dvy028

    Article  CAS  PubMed  Google Scholar 

  13. Abraham E, Rousseaux S, Agier L, Giorgis-Allemand L, Tost J, Galineau J, Hulin A, Siroux V, Vaiman D, Charles MA, Heude B, Forhan A, Schwartz J, Chuffart F, Bourova-Flin E, Khochbin S, Slama R, Lepeule J (2018) Pregnancy exposure to atmospheric pollution and meteorological conditions and placental DNA methylation. Environ Int 118:334–347. https://doi.org/10.1016/j.envint.2018.05.007

    Article  CAS  PubMed  Google Scholar 

  14. Ladd-Acosta C, Feinberg JI, Brown SC, Lurmann FW, Croen LA, Hertz-Picciotto I, Newschaffer CJ, Feinberg AP, Fallin MD, Volk HE (2019) Epigenetic marks of prenatal air pollution exposure found in multiple tissues relevant for child health. Environ Int 126:363–376. https://doi.org/10.1016/j.envint.2019.02.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Plusquin M, Guida F, Polidoro S, Vermeulen R, Raaschou-Nielsen O, Campanella G, Hoek G, Kyrtopoulos SA, Georgiadis P, Naccarati A, Sacerdote C, Krogh V, Bas Bueno-de-Mesquita H, Monique Verschuren WM, Sayols-Baixeras S, Panni T, Peters A, Hebels D, Kleinjans J, Vineis P, Chadeau-Hyam M (2017) DNA methylation and exposure to ambient air pollution in two prospective cohorts. Environ Int 108:127–136. https://doi.org/10.1016/j.envint.2017.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bind MC, Rubin DB, Cardenas A, Dhingra R, Ward-Caviness C, Liu Z, Mirowsky J, Schwartz JD, Diaz-Sanchez D, Devlin RB (2020) Heterogeneous ozone effects on the DNA methylome of bronchial cells observed in a crossover study. Sci Rep 10(1):15739. https://doi.org/10.1038/s41598-020-72068-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maghbooli Z, Hossein-Nezhad A, Adabi E, Asadollah-Pour E, Sadeghi M, Mohammad-Nabi S, Zakeri Rad L, Malek Hosseini AA, Radmehr M, Faghihi F, Aghaei A, Omidifar A, Aghababei Y, Behzadi H (2018) Air pollution during pregnancy and placental adaptation in the levels of global DNA methylation. PLoS One 13(7):e0199772. https://doi.org/10.1371/journal.pone.0199772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vos S, Nawrot TS, Martens DS, Byun HM, Janssen BG (2020) Mitochondrial DNA methylation in placental tissue: a proof of concept study by means of prenatal environmental stressors. Epigenetics:1–11. https://doi.org/10.1080/15592294.2020.1790923

  19. Gruzieva O, Xu CJ, Yousefi P, Relton C, Merid SK, Breton CV, Gao L, Volk HE, Feinberg JI, Ladd-Acosta C, Bakulski K, Auffray C, Lemonnier N, Plusquin M, Ghantous A, Herceg Z, Nawrot TS, Pizzi C, Richiardi L, Rusconi F, Vineis P, Kogevinas M, Felix JF, Duijts L, den Dekker HT, Jaddoe VWV, Ruiz JL, Bustamante M, Antó JM, Sunyer J, Vrijheid M, Gutzkow KB, Grazuleviciene R, Hernandez-Ferrer C, Annesi-Maesano I, Lepeule J, Bousquet J, Bergström A, Kull I, Söderhäll C, Kere J, Gehring U, Brunekreef B, Just AC, Wright RJ, Peng C, Gold DR, Kloog I, DeMeo DL, Pershagen G, Koppelman GH, London SJ, Baccarelli AA, Melén E (2019) Prenatal particulate air pollution and DNA methylation in newborns: an epigenome-wide meta-analysis. Environ Health Perspect 127(5):57012. https://doi.org/10.1289/ehp4522

    Article  CAS  PubMed  Google Scholar 

  20. Nwanaji-Enwerem JC, Colicino E, Trevisi L, Kloog I, Just AC, Shen J, Brennan K, Dereix A, Hou L, Vokonas P, Schwartz J, Baccarelli AA (2016) Long-term ambient particle exposures and blood DNA methylation age: findings from the VA normative aging study. Environ Epigenet 2(2). https://doi.org/10.1093/eep/dvw006

  21. Panni T, Mehta AJ, Schwartz JD, Baccarelli AA, Just AC, Wolf K, Wahl S, Cyrys J, Kunze S, Strauch K, Waldenberger M, Peters A (2016) Genome-wide analysis of DNA methylation and fine particulate matter air pollution in three study populations: KORA F3, KORA F4, and the Normative Aging Study. Environ Health Perspect 124(7):983–990. https://doi.org/10.1289/ehp.1509966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mostafavi N, Vermeulen R, Ghantous A, Hoek G, Probst-Hensch N, Herceg Z, Tarallo S, Naccarati A, Kleinjans JCS, Imboden M, Jeong A, Morley D, Amaral AFS, van Nunen E, Gulliver J, Chadeau-Hyam M, Vineis P, Vlaanderen J (2018) Acute changes in DNA methylation in relation to 24 h personal air pollution exposure measurements: a panel study in four European countries. Environ Int 120:11–21. https://doi.org/10.1016/j.envint.2018.07.026

    Article  CAS  PubMed  Google Scholar 

  23. Zheng Y, Sanchez-Guerra M, Zhang Z, Joyce BT, Zhong J, Kresovich JK, Liu L, Zhang W, Gao T, Chang D, Osorio-Yanez C, Carmona JJ, Wang S, McCracken JP, Zhang X, Chervona Y, Díaz A, Bertazzi PA, Koutrakis P, Kang CM, Schwartz J, Baccarelli AA, Hou L (2017) Traffic-derived particulate matter exposure and histone H3 modification: a repeated measures study. Environ Res 153:112–119. https://doi.org/10.1016/j.envres.2016.11.015

    Article  CAS  PubMed  Google Scholar 

  24. Christensen S, Jaffar Z, Cole E, Porter V, Ferrini M, Postma B, Pinkerton KE, Yang M, Kim YJ, Montrose L, Roberts K, Holian A, Cho YH (2017) Prenatal environmental tobacco smoke exposure increases allergic asthma risk with methylation changes in mice. Environ Mol Mutagen 58(6):423–433. https://doi.org/10.1002/em.22097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Joubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, Reese SE, Markunas CA, Richmond RC, Xu CJ, Küpers LK, Oh SS, Hoyo C, Gruzieva O, Söderhäll C, Salas LA, Baïz N, Zhang H, Lepeule J, Ruiz C, Ligthart S, Wang T, Taylor JA, Duijts L, Sharp GC, Jankipersadsing SA, Nilsen RM, Vaez A, Fallin MD, Hu D, Litonjua AA, Fuemmeler BF, Huen K, Kere J, Kull I, Munthe-Kaas MC, Gehring U, Bustamante M, Saurel-Coubizolles MJ, Quraishi BM, Ren J, Tost J, Gonzalez JR, Peters MJ, Håberg SE, Xu Z, van Meurs JB, Gaunt TR, Kerkhof M, Corpeleijn E, Feinberg AP, Eng C, Baccarelli AA, Benjamin Neelon SE, Bradman A, Merid SK, Bergström A, Herceg Z, Hernandez-Vargas H, Brunekreef B, Pinart M, Heude B, Ewart S, Yao J, Lemonnier N, Franco OH, Wu MC, Hofman A, McArdle W, Van der Vlies P, Falahi F, Gillman MW, Barcellos LF, Kumar A, Wickman M, Guerra S, Charles MA, Holloway J, Auffray C, Tiemeier HW, Smith GD, Postma D, Hivert MF, Eskenazi B, Vrijheid M, Arshad H, Antó JM, Dehghan A, Karmaus W, Annesi-Maesano I, Sunyer J, Ghantous A, Pershagen G, Holland N, Murphy SK, DeMeo DL, Burchard EG, Ladd-Acosta C, Snieder H, Nystad W, Koppelman GH, Relton CL, Jaddoe VW, Wilcox A, Melén E, London SJ (2016) DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet 98(4):680–696. https://doi.org/10.1016/j.ajhg.2016.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rauschert S, Melton PE, Heiskala A, Karhunen V, Burdge G, Craig JM, Godfrey KM, Lillycrop K, Mori TA, Beilin LJ, Oddy WH, Pennell C, Järvelin MR, Sebert S, Huang RC (2020) Machine learning-based DNA methylation score for fetal exposure to maternal smoking: development and validation in samples collected from adolescents and adults. Environ Health Perspect 128(9):97003. https://doi.org/10.1289/ehp6076

    Article  CAS  PubMed  Google Scholar 

  27. Brunst KJ, Tignor N, Just A, Liu Z, Lin X, Hacker MR, Bosquet Enlow M, Wright RO, Wang P, Baccarelli AA, Wright RJ (2018) Cumulative lifetime maternal stress and epigenome-wide placental DNA methylation in the PRISM cohort. Epigenetics 13(6):665–681. https://doi.org/10.1080/15592294.2018.1497387

    Article  PubMed  PubMed Central  Google Scholar 

  28. Clifford RL, Jones MJ, MacIsaac JL, McEwen LM, Goodman SJ, Mostafavi S, Kobor MS, Carlsten C (2017) Inhalation of diesel exhaust and allergen alters human bronchial epithelium DNA methylation. J Allergy Clin Immunol 139(1):112–121. https://doi.org/10.1016/j.jaci.2016.03.046

    Article  CAS  PubMed  Google Scholar 

  29. Reese SE, Xu CJ, den Dekker HT, Lee MK, Sikdar S, Ruiz-Arenas C, Merid SK, Rezwan FI, Page CM, Ullemar V, Melton PE, Oh SS, Yang IV, Burrows K, Söderhäll C, Jima DD, Gao L, Arathimos R, Küpers LK, Wielscher M, Rzehak P, Lahti J, Laprise C, Madore AM, Ward J, Bennett BD, Wang T, Bell DA, Vonk JM, Håberg SE, Zhao S, Karlsson R, Hollams E, Hu D, Richards AJ, Bergström A, Sharp GC, Felix JF, Bustamante M, Gruzieva O, Maguire RL, Gilliland F, Baïz N, Nohr EA, Corpeleijn E, Sebert S, Karmaus W, Grote V, Kajantie E, Magnus MC, Örtqvist AK, Eng C, Liu AH, Kull I, Jaddoe VWV, Sunyer J, Kere J, Hoyo C, Annesi-Maesano I, Arshad SH, Koletzko B, Brunekreef B, Binder EB, Räikkönen K, Reischl E, Holloway JW, Jarvelin MR, Snieder H, Kazmi N, Breton CV, Murphy SK, Pershagen G, Anto JM, Relton CL, Schwartz DA, Burchard EG, Huang RC, Nystad W, Almqvist C, Henderson AJ, Melén E, Duijts L, Koppelman GH, London SJ (2019) Epigenome-wide meta-analysis of DNA methylation and childhood asthma. J Allergy Clin Immunol 143(6):2062–2074. https://doi.org/10.1016/j.jaci.2018.11.043

    Article  CAS  PubMed  Google Scholar 

  30. Xu CJ, Söderhäll C, Bustamante M, Baïz N, Gruzieva O, Gehring U, Mason D, Chatzi L, Basterrechea M, Llop S, Torrent M, Forastiere F, Fantini MP, Carlsen KCL, Haahtela T, Morin A, Kerkhof M, Merid SK, van Rijkom B, Jankipersadsing SA, Bonder MJ, Ballereau S, Vermeulen CJ, Aguirre-Gamboa R, de Jongste JC, Smit HA, Kumar A, Pershagen G, Guerra S, Garcia-Aymerich J, Greco D, Reinius L, McEachan RRC, Azad R, Hovland V, Mowinckel P, Alenius H, Fyhrquist N, Lemonnier N, Pellet J, Auffray C, van der Vlies P, van Diemen CC, Li Y, Wijmenga C, Netea MG, Moffatt MF, Cookson W, Anto JM, Bousquet J, Laatikainen T, Laprise C, Carlsen KH, Gori D, Porta D, Iñiguez C, Bilbao JR, Kogevinas M, Wright J, Brunekreef B, Kere J, Nawijn MC, Annesi-Maesano I, Sunyer J, Melén E, Koppelman GH (2018) DNA methylation in childhood asthma: an epigenome-wide meta-analysis. Lancet Respir Med 6(5):379–388. https://doi.org/10.1016/s2213-2600(18)30052-3

    Article  CAS  PubMed  Google Scholar 

  31. Hoang TT, Sikdar S, Xu CJ, Lee MK, Cardwell J, Forno E, Imboden M, Jeong A, Madore AM, Qi C, Wang T, Bennett BD, Ward JM, Parks CG, Beane-Freeman LE, King D, Motsinger-Reif A, Umbach DM, Wyss AB, Schwartz DA, Celedón JC, Laprise C, Ober C, Probst-Hensch N, Yang IV, Koppelman GH, London SJ (2020) Epigenome-wide association study of DNA methylation and adult asthma in the Agricultural Lung Health Study. Eur Respir J 56(3). https://doi.org/10.1183/13993003.00217-2020

  32. Groth EE, Weber M, Bahmer T, Pedersen F, Kirsten A, Börnigen D, Rabe KF, Watz H, Ammerpohl O, Goldmann T (2020) Exploration of the sputum methylome and omics deconvolution by quadratic programming in molecular profiling of asthma and COPD: the road to sputum omics 2.0. Respir Res 21(1):274. https://doi.org/10.1186/s12931-020-01544-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cardenas A, Sordillo JE, Rifas-Shiman SL, Chung W, Liang L, Coull BA, Hivert MF, Lai PS, Forno E, Celedón JC, Litonjua AA, Brennan KJ, DeMeo DL, Baccarelli AA, Oken E, Gold DR (2019) The nasal methylome as a biomarker of asthma and airway inflammation in children. Nat Commun 10(1):3095. https://doi.org/10.1038/s41467-019-11058-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qi C, Jiang Y, Yang IV, Forno E, Wang T, Vonk JM, Gehring U, Smit HA, Milanzi EB, Carpaij OA, Berg M, Hesse L, Brouwer S, Cardwell J, Vermeulen CJ, Acosta-Pérez E, Canino G, Boutaoui N, van den Berge M, Teichmann SA, Nawijn MC, Chen W, Celedón JC, Xu CJ, Koppelman GH (2020) Nasal DNA methylation profiling of asthma and rhinitis. J Allergy Clin Immunol 145(6):1655–1663. https://doi.org/10.1016/j.jaci.2019.12.911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang IV, Pedersen BS, Liu AH, O’Connor GT, Pillai D, Kattan M, Misiak RT, Gruchalla R, Szefler SJ, Khurana Hershey GK, Kercsmar C, Richards A, Stevens AD, Kolakowski CA, Makhija M, Sorkness CA, Krouse RZ, Visness C, Davidson EJ, Hennessy CE, Martin RJ, Togias A, Busse WW, Schwartz DA (2017) The nasal methylome and childhood atopic asthma. J Allergy Clin Immunol 139(5):1478–1488. https://doi.org/10.1016/j.jaci.2016.07.036

    Article  CAS  PubMed  Google Scholar 

  36. Forno E, Wang T, Qi C, Yan Q, Xu CJ, Boutaoui N, Han YY, Weeks DE, Jiang Y, Rosser F, Vonk JM, Brouwer S, Acosta-Perez E, Colón-Semidey A, Alvarez M, Canino G, Koppelman GH, Chen W, Celedón JC (2019) DNA methylation in nasal epithelium, atopy, and atopic asthma in children: a genome-wide study. Lancet Respir Med 7(4):336–346. https://doi.org/10.1016/s2213-2600(18)30466-1

    Article  CAS  PubMed  Google Scholar 

  37. Kim S, Forno E, Zhang R, Park HJ, Xu Z, Yan Q, Boutaoui N, Acosta-Pérez E, Canino G, Chen W, Celedón JC (2020) Expression quantitative trait methylation analysis reveals methylomic associations with gene expression in childhood asthma. Chest 158(5):1841–1856. https://doi.org/10.1016/j.chest.2020.05.601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stefanowicz D, Ullah J, Lee K, Shaheen F, Olumese E, Fishbane N, Koo HK, Hallstrand TS, Knight DA, Hackett TL (2017) Epigenetic modifying enzyme expression in asthmatic airway epithelial cells and fibroblasts. BMC Pulm Med 17(1):24. https://doi.org/10.1186/s12890-017-0371-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nicodemus-Johnson J, Myers RA, Sakabe NJ, Sobreira DR, Hogarth DK, Naureckas ET, Sperling AI, Solway J, White SR, Nobrega MA, Nicolae DL, Gilad Y, Ober C (2016) DNA methylation in lung cells is associated with asthma endotypes and genetic risk. JCI Insight 1(20):e90151. https://doi.org/10.1172/jci.insight.90151

    Article  PubMed  PubMed Central  Google Scholar 

  40. Barton SJ, Ngo S, Costello P, Garratt E, El-Heis S, Antoun E, Clarke-Harris R, Murray R, Bhatt T, Burdge G, Cooper C, Inskip H, van der Beek EM, Sheppard A, Godfrey KM, Lillycrop KA (2017) DNA methylation of Th2 lineage determination genes at birth is associated with allergic outcomes in childhood. Clin Exp Allergy 47(12):1599–1608. https://doi.org/10.1111/cea.12988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jung KH, Lovinsky-Desir S, Yan B, Torrone D, Lawrence J, Jezioro JR, Perzanowski M, Perera FP, Chillrud SN, Miller RL (2017) Effect of personal exposure to black carbon on changes in allergic asthma gene methylation measured 5 days later in urban children: importance of allergic sensitization. Clin Epigenetics 9:61. https://doi.org/10.1186/s13148-017-0361-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nicodemus-Johnson J, Naughton KA, Sudi J, Hogarth K, Naurekas ET, Nicolae DL, Sperling AI, Solway J, White SR, Ober C (2016) Genome-wide methylation study identifies an IL-13-induced epigenetic signature in asthmatic airways. Am J Respir Crit Care Med 193(4):376–385. https://doi.org/10.1164/rccm.201506-1243OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kyburz A, Fallegger A, Zhang X, Altobelli A, Artola-Boran M, Borbet T, Urban S, Paul P, Münz C, Floess S, Huehn J, Cover TL, Blaser MJ, Taube C, Müller A (2019) Transmaternal Helicobacter pylori exposure reduces allergic airway inflammation in offspring through regulatory T cells. J Allergy Clin Immunol 143(4):1496–1512. https://doi.org/10.1016/j.jaci.2018.07.046

    Article  CAS  PubMed  Google Scholar 

  44. DeVries A, Wlasiuk G, Miller SJ, Bosco A, Stern DA, Lohman IC, Rothers J, Jones AC, Nicodemus-Johnson J, Vasquez MM, Curtin JA, Simpson A, Custovic A, Jackson DJ, Gern JE, Lemanske RF Jr, Guerra S, Wright AL, Ober C, Halonen M, Vercelli D (2017) Epigenome-wide analysis links SMAD3 methylation at birth to asthma in children of asthmatic mothers. J Allergy Clin Immunol 140(2):534–542. https://doi.org/10.1016/j.jaci.2016.10.041

    Article  CAS  PubMed  Google Scholar 

  45. Yu Q, Yu X, Zhao W, Zhu M, Wang Z, Zhang J, Huang M, Zeng X (2018) Inhibition of H3K27me3 demethylases attenuates asthma by reversing the shift in airway smooth muscle phenotype. Clin Exp Allergy 48(11):1439–1452. https://doi.org/10.1111/cea.13244

    Article  CAS  PubMed  Google Scholar 

  46. Perry MM, Lavender P, Kuo CS, Galea F, Michaeloudes C, Flanagan JM, Fan Chung K, Adcock IM (2018) DNA methylation modules in airway smooth muscle are associated with asthma severity. Eur Respir J 51(4). https://doi.org/10.1183/13993003.01068-2017

  47. Chen Y, Qiao L, Zhang Z, Hu G, Zhang J, Li H (2019) Let-7a inhibits proliferation and promotes apoptosis of human asthmatic airway smooth muscle cells. Exp Ther Med 17(5):3327–3334. https://doi.org/10.3892/etm.2019.7363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang H, Lu H, Liang L, Zhi Y, Huo B, Wu L, Xu L, Shen Z (2019) MicroRNA-744 inhibits proliferation of bronchial epithelial cells by regulating SMAD3 pathway via targeting Transforming Growth Factor-β1 (TGF-β1) in severe asthma. Med Sci Monit 25:2159–2168. https://doi.org/10.12659/msm.912412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang X, Biagini Myers JM, Burleson JD, Ulm A, Bryan KS, Chen X, Weirauch MT, Baker TA, Butsch Kovacic MS, Ji H (2018) Nasal DNA methylation is associated with childhood asthma. Epigenomics 10(5):629–641. https://doi.org/10.2217/epi-2017-0127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wardzyńska A, Pawełczyk M, Rywaniak J, Kurowski M, Makowska JS, Kowalski ML (2020) Circulating microRNAs and T-cell cytokine expression are associated with the characteristics of asthma exacerbation. Allergy, Asthma Immunol Res 12(1):125–136. https://doi.org/10.4168/aair.2020.12.1.125

    Article  CAS  Google Scholar 

  51. den Dekker HT, Burrows K, Felix JF, Salas LA, Nedeljkovic I, Yao J, Rifas-Shiman SL, Ruiz-Arenas C, Amin N, Bustamante M, DeMeo DL, Henderson AJ, Howe CG, Hivert MF, Ikram MA, de Jongste JC, Lahousse L, Mandaviya PR, van Meurs JB, Pinart M, Sharp GC, Stolk L, Uitterlinden AG, Anto JM, Litonjua AA, Breton CV, Brusselle GG, Sunyer J, Smith GD, Relton CL, Jaddoe VWV, Duijts L (2019) Newborn DNA-methylation, childhood lung function, and the risks of asthma and COPD across the life course. Eur Respir J 53(4). https://doi.org/10.1183/13993003.01795-2018

  52. Sunny SK, Zhang H, Mzayek F, Relton CL, Ring S, Henderson AJ, Ewart S, Holloway JW, Arshad SH (2021) Pre-adolescence DNA methylation is associated with lung function trajectories from pre-adolescence to adulthood. Clin Epigenetics 13(1):5. https://doi.org/10.1186/s13148-020-00992-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yuan L, Du X, Tang S, Wu S, Wang L, Xiang Y, Qu X, Liu H, Qin X, Liu C (2019) ITGB4 deficiency induces senescence of airway epithelial cells through p53 activation. FEBS J 286(6):1191–1203. https://doi.org/10.1111/febs.14749

    Article  CAS  PubMed  Google Scholar 

  54. Wu M, Yang Y, Yuan L, Yang M, Wang L, Du X, Qin L, Wu S, Xiang Y, Qu X, Liu H, Qin X, Liu C (2020) DNA methylation down-regulates integrin β4 expression in asthmatic airway epithelial cells. Clin Exp Allergy 50(10):1127–1139. https://doi.org/10.1111/cea.13697

    Article  CAS  PubMed  Google Scholar 

  55. Prunicki M, Stell L, Dinakarpandian D, de Planell-Saguer M, Lucas RW, Hammond SK, Balmes JR, Zhou X, Paglino T, Sabatti C, Miller RL, Nadeau KC (2018) Exposure to NO(2), CO, and PM(2.5) is linked to regional DNA methylation differences in asthma. Clin. Epigenetics 10(2). https://doi.org/10.1186/s13148-017-0433-4

  56. Burleson JD, Siniard D, Yadagiri VK, Chen X, Weirauch MT, Ruff BP, Brandt EB, Hershey GKK, Ji H (2019) TET1 contributes to allergic airway inflammation and regulates interferon and aryl hydrocarbon receptor signaling pathways in bronchial epithelial cells. Sci Rep 9(1):7361. https://doi.org/10.1038/s41598-019-43767-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Somineni HK, Zhang X, Biagini Myers JM, Kovacic MB, Ulm A, Jurcak N, Ryan PH, Khurana Hershey GK, Ji H (2016) Ten-eleven translocation 1 (TET1) methylation is associated with childhood asthma and traffic-related air pollution. J Allergy Clin Immunol 137(3):797–805. https://doi.org/10.1016/j.jaci.2015.10.021

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Q, Wang W, Niu Y, Xia Y, Lei X, Huo J, Zhao Q, Zhang Y, Duan Y, Cai J, Ying Z, Li W, Chen R, Fu Q, Kan H (2019) The effects of fine particulate matter constituents on exhaled nitric oxide and DNA methylation in the arginase-nitric oxide synthase pathway. Environ Int 131:105019. https://doi.org/10.1016/j.envint.2019.105019

    Article  CAS  PubMed  Google Scholar 

  59. Trump S, Bieg M, Gu Z, Thürmann L, Bauer T, Bauer M, Ishaque N, Röder S, Gu L, Herberth G, Lawerenz C, Borte M, Schlesner M, Plass C, Diessl N, Eszlinger M, Mücke O, Elvers HD, Wissenbach DK, von Bergen M, Herrmann C, Weichenhan D, Wright RJ, Lehmann I, Eils R (2016) Prenatal maternal stress and wheeze in children: novel insights into epigenetic regulation. Sci Rep 6:28616. https://doi.org/10.1038/srep28616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lovinsky-Desir S, Jung KH, Jezioro JR, Torrone DZ, de Planell-Saguer M, Yan B, Perera FP, Rundle AG, Perzanowski MS, Chillrud SN, Miller RL (2017) Physical activity, black carbon exposure, and DNA methylation in the FOXP3 promoter. Clin Epigenetics 9:65. https://doi.org/10.1186/s13148-017-0364-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rider CF, Yamamoto M, Günther OP, Hirota JA, Singh A, Tebbutt SJ, Carlsten C (2016) Controlled diesel exhaust and allergen coexposure modulates microRNA and gene expression in humans: effects on inflammatory lung markers. J Allergy Clin Immunol 138(6):1690–1700. https://doi.org/10.1016/j.jaci.2016.02.038

    Article  CAS  PubMed  Google Scholar 

  62. Jahreis S, Trump S, Bauer M, Bauer T, Thürmann L, Feltens R, Wang Q, Gu L, Grützmann K, Röder S, Averbeck M, Weichenhan D, Plass C, Sack U, Borte M, Dubourg V, Schüürmann G, Simon JC, von Bergen M, Hackermüller J, Eils R, Lehmann I, Polte T (2018) Maternal phthalate exposure promotes allergic airway inflammation over 2 generations through epigenetic modifications. J Allergy Clin Immunol 141(2):741–753. https://doi.org/10.1016/j.jaci.2017.03.017

    Article  CAS  PubMed  Google Scholar 

  63. Qiu L, Zhang Y, Do DC, Ke X, Zhang S, Lambert K, Kumar S, Hu C, Zhou Y, Ishmael FT, Gao P (2018) miR-155 modulates cockroach allergen- and oxidative stress-induced Cyclooxygenase-2 in asthma. J Immunol 201(3):916–929. https://doi.org/10.4049/jimmunol.1701167

    Article  CAS  PubMed  Google Scholar 

  64. Sbihi H, Jones MJ, MacIsaac JL, Brauer M, Allen RW, Sears MR, Subbarao P, Mandhane PJ, Moraes TJ, Azad MB, Becker AB, Brook JR, Kobor MS, Turvey SE (2019) Prenatal exposure to traffic-related air pollution, the gestational epigenetic clock, and risk of early-life allergic sensitization. J Allergy Clin Immunol 144(6):1729–1731. https://doi.org/10.1016/j.jaci.2019.07.047

    Article  PubMed  Google Scholar 

  65. Wang IJ, Karmaus WJ, Chen SL, Holloway JW, Ewart S (2015) Effects of phthalate exposure on asthma may be mediated through alterations in DNA methylation. Clin Epigenetics 7(1):27. https://doi.org/10.1186/s13148-015-0060-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lichtenfels AJ d FC, van der Plaat DA, de Jong K, van Diemen CC, Postma DS, Nedeljkovic I, van Duijn CM, Amin N, la Bastide-van Gemert S, de Vries M, Ward-Caviness CK, Wolf K, Waldenberger M, Peters A, Stolk RP, Brunekreef B, Boezen HM, Vonk JM (2018) Long-term air pollution exposure, genome-wide DNA methylation and lung function in the LifeLines Cohort study. Environ Health Perspect 126(2):027004. https://doi.org/10.1289/ehp2045

    Article  CAS  Google Scholar 

  67. Jeong A, Imboden M, Ghantous A, Novoloaca A, Carsin AE, Kogevinas M, Schindler C, Lovison G, Herceg Z, Cuenin C, Vermeulen R, Jarvis D, Amaral AFS, Kronenberg F, Vineis P, Probst-Hensch N (2019) DNA methylation in inflammatory pathways modifies the association between BMI and adult-onset non-atopic asthma. Int J Environ Res Public Health 16(4). https://doi.org/10.3390/ijerph16040600

  68. Amaral AFS, Imboden M, Wielscher M, Rezwan FI, Minelli C, Garcia-Aymerich J, Peralta GP, Auvinen J, Jeong A, Schaffner E, Beckmeyer-Borowko A, Holloway JW, Jarvelin MR, Probst-Hensch NM, Jarvis DL (2020) Role of DNA methylation in the association of lung function with body mass index: a two-step epigenetic Mendelian randomisation study. BMC Pulm Med 20(1):171. https://doi.org/10.1186/s12890-020-01212-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang CM, Chang CB, Lee SP, Chan MWY, Wu SF (2020) Differential DNA methylation profiles of peripheral blood mononuclear cells in allergic asthmatic children following dust mite immunotherapy. J Microbiol Immunol Infect 53(6):986–995. https://doi.org/10.1016/j.jmii.2020.06.004

    Article  CAS  PubMed  Google Scholar 

  70. Fussbroich D, Kohnle C, Schwenger T, Driessler C, Dücker RP, Eickmeier O, Gottwald G, Jerkic SP, Zielen S, Kreyenberg H, Beermann C, Chiocchetti AG, Schubert R (2020) A combination of LCPUFAs regulates the expression of miRNA-146a-5p in a murine asthma model and human alveolar cells. Prostaglandins Other Lipid Mediat 147:106378. https://doi.org/10.1016/j.prostaglandins.2019.106378

    Article  CAS  PubMed  Google Scholar 

  71. Shorey-Kendrick LE, McEvoy CT, Ferguson B, Burchard J, Park BS, Gao L, Vuylsteke BH, Milner KF, Morris CD, Spindel ER (2017) Vitamin C prevents offspring DNA methylation changes associated with maternal smoking in pregnancy. Am J Respir Crit Care Med 196(6):745–755. https://doi.org/10.1164/rccm.201610-2141OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhong J, Karlsson O, Wang G, Li J, Guo Y, Lin X, Zemplenyi M, Sanchez-Guerra M, Trevisi L, Urch B, Speck M, Liang L, Coull BA, Koutrakis P, Silverman F, Gold DR, Wu T, Baccarelli AA (2017) B vitamins attenuate the epigenetic effects of ambient fine particles in a pilot human intervention trial. Proc Natl Acad Sci U S A 114(13):3503–3508. https://doi.org/10.1073/pnas.1618545114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xiao C, Biagini Myers JM, Ji H, Metz K, Martin LJ, Lindsey M, He H, Powers R, Ulm A, Ruff B, Ericksen MB, Somineni HK, Simmons J, Strait RT, Kercsmar CM, Khurana Hershey GK (2015) Vanin-1 expression and methylation discriminate pediatric asthma corticosteroid treatment response. J Allergy Clin Immunol 136(4):923–931. https://doi.org/10.1016/j.jaci.2015.01.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang X, Biagini Myers JM, Yadagiri VK, Ulm A, Chen X, Weirauch MT, Khurana Hershey GK, Ji H (2017) Nasal DNA methylation differentiates corticosteroid treatment response in pediatric asthma: a pilot study. PLoS One 12(10):e0186150. https://doi.org/10.1371/journal.pone.0186150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang AL, Qiu W, DeMeo DL, Raby BA, Weiss ST, Tantisira KG (2019) DNA methylation is associated with improvement in lung function on inhaled corticosteroids in pediatric asthmatics. Pharmacogenet Genomics 29(3):65–68. https://doi.org/10.1097/fpc.0000000000000366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Michel S, Busato F, Genuneit J, Pekkanen J, Dalphin JC, Riedler J, Mazaleyrat N, Weber J, Karvonen AM, Hirvonen MR, Braun-Fahrländer C, Lauener R, von Mutius E, Kabesch M, Tost J (2013) Farm exposure and time trends in early childhood may influence DNA methylation in genes related to asthma and allergy. Allergy 68(3):355–364. https://doi.org/10.1111/all.12097

    Article  CAS  PubMed  Google Scholar 

  77. Gregory DJ, Kobzik L, Yang Z, McGuire CC, Fedulov AV (2017) Transgenerational transmission of asthma risk after exposure to environmental particles during pregnancy. Am J Phys Lung Cell Mol Phys 313(2):L395–l405. https://doi.org/10.1152/ajplung.00035.2017

    Article  Google Scholar 

  78. Brugha R, Lowe R, Henderson AJ, Holloway JW, Rakyan V, Wozniak E, Mahmud N, Seymour K, Grigg J, Shaheen SO (2017) DNA methylation profiles between airway epithelium and proxy tissues in children. Acta Paediatr 106(12):2011–2016. https://doi.org/10.1111/apa.14027

    Article  CAS  PubMed  Google Scholar 

  79. Lin PI, Shu H, Mersha TB (2020) Comparing DNA methylation profiles across different tissues associated with the diagnosis of pediatric asthma. Sci Rep 10(1):151. https://doi.org/10.1038/s41598-019-56310-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Moen EL, Zhang X, Mu W, Delaney SM, Wing C, McQuade J, Myers J, Godley LA, Dolan ME, Zhang W (2013) Genome-wide variation of cytosine modifications between European and African populations and the implications for complex traits. Genetics 194(4):987–996. https://doi.org/10.1534/genetics.113.151381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mozhui K, Smith AK, Tylavsky FA (2015) Ancestry dependent DNA methylation and influence of maternal nutrition. PLoS One 10(3):e0118466. https://doi.org/10.1371/journal.pone.0118466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Barfield RT, Almli LM, Kilaru V, Smith AK, Mercer KB, Duncan R, Klengel T, Mehta D, Binder EB, Epstein MP, Ressler KJ, Conneely KN (2014) Accounting for population stratification in DNA methylation studies. Genet Epidemiol 38(3):231–241. https://doi.org/10.1002/gepi.21789

    Article  PubMed  PubMed Central  Google Scholar 

  83. Breton CV, Marsit CJ, Faustman E, Nadeau K, Goodrich JM, Dolinoy DC, Herbstman J, Holland N, LaSalle JM, Schmidt R, Yousefi P, Perera F, Joubert BR, Wiemels J, Taylor M, Yang IV, Chen R, Hew KM, Freeland DM, Miller R, Murphy SK (2017) Small-magnitude effect sizes in epigenetic end points are important in children’s environmental health studies: the Children’s Environmental Health and Disease Prevention Research Center’s Epigenetics Working Group. Environ Health Perspect 125(4):511–526. https://doi.org/10.1289/ehp595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel L. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miller, R.L., Chen, J. (2022). Asthma Epigenetics: Elucidating an Expanding Paradigm. In: Michels, K.B. (eds) Epigenetic Epidemiology. Springer, Cham. https://doi.org/10.1007/978-3-030-94475-9_16

Download citation

Publish with us

Policies and ethics