Skip to main content

The Human Epigenome

  • Chapter
  • First Online:
Epigenetic Epidemiology

Abstract

The output of the genome is controlled by the interaction of transcription factors with the epigenome. Epigenetic processes such as DNA methylation, histone modification, histone variants, noncoding RNAs, and nucleosomal remodeling machines interact with each other to ensure stable states of gene expression. These processes can become dysregulated during aging, exposure to environmental stressors, and the development of cancer and other diseases. DNA methylation patterns can be relatively easily read by high throughput techniques and provide information reflecting the influence of the environment and aging on the functionality of the epigenome. Analysis of DNA methylation patterns, therefore, provides an exciting new route to understanding how the environment interacts with the epigenome to cause disease. Despite the promise of DNA methylation patterns for epidemiologic studies, caution in interpreting data from surrogate tissues is necessary and cellular heterogeneity can also complicate interpretation of the data. In addition, DNA methylation within the body of genes can influence the response of the genome to the environment. Hypomethylation of repetitive elements can lead to genomic instability and ectopic gene expression. Methylation of coding regions can directly increase the rate of spontaneous hydrolytic mutations and increase the mutational frequency induced by carcinogens and radiation. Epigenetic processes can therefore contribute in multiple ways to the development of human diseases particularly cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5mC:

5-methylcytosine

5hmC:

5-hydroxymethylcytosine

5fC:

5-formylcytosine

5caC:

5-carboxylcytosine

CHD:

Chromodomain Helicase DNA binding protein

ChIP:

Chromatin immunoprecipitation

DNMT1:

DNA methyltransferase 1

DNMT3A:

DNA methyltransferase 3A

DNMT3B:

DNA methyltransferase 3B

eRNA:

enhancer RNA

ecRNA:

extra-coding RNA

ISWI:

imitation SWItch

KDM:

lysine demethylase

lncRNA:

long noncoding RNA

ncRNA:

noncoding RNA

OxBS:

oxidative bisulfite sequencing

PRC2:

Polycomb Repressive Complex 2

SAM:

S-adenosine methionine

SWI/SNF:

SWItch/Sucrose Non-Fermentable

TAB-seq:

Tet-assisted bisulfite sequencing

TDG:

thymine DNA glycosylases

TETs:

Ten-eleven translocation enzymes

UDG:

uracil DNA glycosylases

UHRF1:

Ubiquitin-like, containing PHD and RING finger domains, 1

References

  1. Jones PA, Archer TK, Baylin SB et al (2008) Moving AHEAD with an international human epigenome project. Nature 454:711–715. https://doi.org/10.1038/454711a

    Article  CAS  Google Scholar 

  2. Rothbart SB, Strahl BD (2014) Interpreting the language of histone and DNA modifications. Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms 1839:627–643. https://doi.org/10.1016/j.bbagrm.2014.03.001

    Article  CAS  Google Scholar 

  3. Rothbart SB, Krajewski K, Nady N et al (2012) Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat Struct Mol Biol 19:1155–1160. https://doi.org/10.1038/nsmb.2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nishiyama A, Yamaguchi L, Sharif J et al (2013) Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication. Nature 502:249–253. https://doi.org/10.1038/nature12488

    Article  CAS  PubMed  Google Scholar 

  5. Rothbart SB, Dickson BM, Ong MS et al (2013) Multivalent histone engagement by the linked tandem Tudor and PHD domains of UHRF1 is required for the epigenetic inheritance of DNA methylation. Genes Dev 27:1288–1298. https://doi.org/10.1101/gad.220467.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harrison JS, Cornett EM, Goldfarb D et al (2016) Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1. eLife 5:e17101. https://doi.org/10.7554/eLife.17101

    Article  PubMed  PubMed Central  Google Scholar 

  7. Qin W, Wolf P, Liu N et al (2015) DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination. Cell Res 25:911–929. https://doi.org/10.1038/cr.2015.72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Su Z, Wang F, Lee J-H et al (2016) Reader domain specificity and lysine demethylase-4 family function. Nature Communications 7:13387. https://doi.org/10.1038/ncomms13387

    Article  PubMed  PubMed Central  Google Scholar 

  9. Clapier CR, Iwasa J, Cairns BR, Peterson CL (2017) Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nature Reviews Molecular Cell Biology 18:407–422. https://doi.org/10.1038/nrm.2017.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cerase A, Pintacuda G, Tattermusch A, Avner P (2015) Xist localization and function: new insights from multiple levels. Genome Biology 16:166. https://doi.org/10.1186/s13059-015-0733-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Iorio MV, Piovan C, Croce CM (2010) Interplay between microRNAs and the epigenetic machinery: An intricate network. Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms 1799:694–701. https://doi.org/10.1016/j.bbagrm.2010.05.005

    Article  CAS  Google Scholar 

  12. Friedman JM, Liang G, Liu C-C et al (2009) The Putative Tumor Suppressor microRNA-101 Modulates the Cancer Epigenome by Repressing the Polycomb Group Protein EZH2. Cancer Res 69:2623–2629. https://doi.org/10.1158/0008-5472.CAN-08-3114

    Article  CAS  PubMed  Google Scholar 

  13. Varambally S, Cao Q, Mani R-S et al (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322:1695–1699. https://doi.org/10.1126/science.1165395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bose DA, Donahue G, Reinberg D et al (2017) RNA Binding to CBP Stimulates Histone Acetylation and Transcription. Cell 168:135–149.e22. https://doi.org/10.1016/j.cell.2016.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rahnamoun H, Lee J, Sun Z et al (2018) RNAs interact with BRD4 to promote enhanced chromatin engagement and transcription activation. Nature Structural & Molecular Biology 25:687–697. https://doi.org/10.1038/s41594-018-0102-0

    Article  CAS  Google Scholar 

  16. Sartorelli V, Lauberth SM (2020) Enhancer RNAs are an important regulatory layer of the epigenome. Nature Structural & Molecular Biology 27:521–528. https://doi.org/10.1038/s41594-020-0446-0

    Article  CAS  Google Scholar 

  17. Di Ruscio A, Ebralidze AK, Benoukraf T et al (2013) DNMT1-interacting RNAs block gene-specific DNA methylation. Nature 503:371–376. https://doi.org/10.1038/nature12598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Savell KE, Gallus NVN, Simon RC et al (2016) Extra-coding RNAs regulate neuronal DNA methylation dynamics. Nature Communications 7:12091. https://doi.org/10.1038/ncomms12091

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gupta RA, Shah N, Wang KC et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076. https://doi.org/10.1038/nature08975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. https://doi.org/10.1038/nature11247

    Article  CAS  Google Scholar 

  21. Kundaje A, Meuleman W, Ernst J et al (2015) Integrative analysis of 111 reference human epigenomes. Nature 518:317–330. https://doi.org/10.1038/nature14248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stunnenberg HG, Abrignani S, Adams D et al (2016) The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell 167:1145–1149. https://doi.org/10.1016/j.cell.2016.11.007

    Article  CAS  PubMed  Google Scholar 

  23. Ernst J, Kellis M (2010) Discovery and characterization of chromatin states for systematic annotation of the human genome. Nature Biotechnology 28:817–825. https://doi.org/10.1038/nbt.1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liang G, Chan MF, Tomigahara Y et al (2002) Cooperativity between DNA Methyltransferases in the Maintenance Methylation of Repetitive Elements. Mol Cell Biol 22:480–491. https://doi.org/10.1128/MCB.22.2.480-491.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu C, Corces VG (2018) Nascent DNA methylome mapping reveals inheritance of hemimethylation at CTCF/cohesin sites. Science 359:1166–1170. https://doi.org/10.1126/science.aan5480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Charlton J, Downing TL, Smith ZD et al (2018) Global delay in nascent strand DNA methylation. Nature Structural & Molecular Biology 25:327–332. https://doi.org/10.1038/s41594-018-0046-4

    Article  CAS  Google Scholar 

  27. Ming X, Zhang Z, Zou Z et al (2020) Kinetics and mechanisms of mitotic inheritance of DNA methylation and their roles in aging-associated methylome deterioration. Cell Research 30:980–996. https://doi.org/10.1038/s41422-020-0359-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Riggs AD (1975) X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14:9–25. https://doi.org/10.1159/000130315

    Article  CAS  PubMed  Google Scholar 

  29. Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226–232. https://doi.org/10.1126/science.187.4173.226

    Article  CAS  PubMed  Google Scholar 

  30. Jones PA, Liang G (2009) Rethinking how DNA methylation patterns are maintained. Nature Reviews Genetics 10:805–811. https://doi.org/10.1038/nrg2651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ooi SKT, Qiu C, Bernstein E et al (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448:714–717. https://doi.org/10.1038/nature05987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Van Emburgh BO, Robertson KD (2011) Modulation of Dnmt3b function in vitro by interactions with Dnmt3L, Dnmt3a and Dnmt3b splice variants. Nucleic Acids Res 39:4984–5002. https://doi.org/10.1093/nar/gkr116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Duymich CE, Charlet J, Yang X et al (2016) DNMT3B isoforms without catalytic activity stimulate gene body methylation as accessory proteins in somatic cells. Nature Communications 7:11453. https://doi.org/10.1038/ncomms11453

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zeng Y, Ren R, Kaur G et al (2020) The inactive Dnmt3b3 isoform preferentially enhances Dnmt3b-mediated DNA methylation. Genes Dev. https://doi.org/10.1101/gad.341925.120

  35. Sharif J, Muto M, Takebayashi S et al (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450:908–912. https://doi.org/10.1038/nature06397

    Article  CAS  PubMed  Google Scholar 

  36. Bostick M, Kim JK, Estève P-O et al (2007) UHRF1 Plays a Role in Maintaining DNA Methylation in Mammalian Cells. Science 317:1760–1764. https://doi.org/10.1126/science.1147939

    Article  CAS  PubMed  Google Scholar 

  37. Feng S, Cokus SJ, Zhang X et al (2010) Conservation and divergence of methylation patterning in plants and animals. PNAS 107:8689–8694. https://doi.org/10.1073/pnas.1002720107

    Article  PubMed  PubMed Central  Google Scholar 

  38. Maunakea AK, Nagarajan RP, Bilenky M et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–257. https://doi.org/10.1038/nature09165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Neri F, Rapelli S, Krepelova A et al (2017) Intragenic DNA methylation prevents spurious transcription initiation. Nature 543:72–77. https://doi.org/10.1038/nature21373

    Article  CAS  PubMed  Google Scholar 

  40. Lister R, Pelizzola M, Dowen RH et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322. https://doi.org/10.1038/nature08514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lister R, Mukamel EA, Nery JR et al (2013) Global Epigenomic Reconfiguration During Mammalian Brain Development. Science 341. https://doi.org/10.1126/science.1237905

  42. Guo JU, Su Y, Shin JH et al (2014) Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nature Neuroscience 17:215–222. https://doi.org/10.1038/nn.3607

    Article  CAS  PubMed  Google Scholar 

  43. Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935. https://doi.org/10.1126/science.1170116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930. https://doi.org/10.1126/science.1169786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ito S, Shen L, Dai Q et al (2011) Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 5-Carboxylcytosine. Science 333:1300–1303. https://doi.org/10.1126/science.1210597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. He Y-F, Li B-Z, Li Z et al (2011) Tet-Mediated Formation of 5-Carboxylcytosine and Its Excision by TDG in Mammalian DNA. Science 333:1303–1307. https://doi.org/10.1126/science.1210944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu M, Hon GC, Szulwach KE et al (2012) Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149:1368–1380. https://doi.org/10.1016/j.cell.2012.04.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Booth MJ, Branco MR, Ficz G et al (2012) Quantitative Sequencing of 5-Methylcytosine and 5-Hydroxymethylcytosine at Single-Base Resolution. Science 336:934–937. https://doi.org/10.1126/science.1220671

    Article  CAS  PubMed  Google Scholar 

  49. Coulondre C, Miller JH, Farabaugh PJ, Gilbert W (1978) Molecular basis of base substitution hotspots in Escherichia coli. Nature 274:775–780. https://doi.org/10.1038/274775a0

    Article  CAS  PubMed  Google Scholar 

  50. Jones PA, Rideout WM, Shen J-C et al (1992) Methylation, mutation and cancer. BioEssays 14:33–36. https://doi.org/10.1002/bies.950140107

    Article  CAS  PubMed  Google Scholar 

  51. Zhou W, Liang G, Molloy PL, Jones PA (2020) DNA methylation enables transposable element-driven genome expansion. PNAS 117:19359–19366. https://doi.org/10.1073/pnas.1921719117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shen J-C, Rideout WM, Jones PA (1994) The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucleic Acids Res 22:972–976. https://doi.org/10.1093/nar/22.6.972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. PNAS 99:3740–3745. https://doi.org/10.1073/pnas.052410099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jones PA, Baylin SB (2007) The Epigenomics of Cancer. Cell 128:683–692. https://doi.org/10.1016/j.cell.2007.01.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wolff EM, Byun H-M, Han HF et al (2010) Hypomethylation of a LINE-1 Promoter Activates an Alternate Transcript of the MET Oncogene in Bladders with Cancer. PLOS Genetics 6:e1000917. https://doi.org/10.1371/journal.pgen.1000917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang AS, Estécio MRH, Doshi K et al (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32:e38. https://doi.org/10.1093/nar/gnh032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rideout WM, Coetzee GA, Olumi AF, Jones PA (1990) 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science 249:1288–1290. https://doi.org/10.1126/science.1697983

    Article  CAS  PubMed  Google Scholar 

  58. Pfeifer GP, Tang M, Denissenko MF (2000) Mutation hotspots and DNA methylation. Curr Top Microbiol Immunol 249:1–19. https://doi.org/10.1007/978-3-642-59696-4_1

    Article  CAS  PubMed  Google Scholar 

  59. Jones PA, Buckley JD, Henderson BE et al (1991) From Gene to Carcinogen: A Rapidly Evolving Field in Molecular Epidemiology. Cancer Res 51:3617–3620

    CAS  PubMed  Google Scholar 

  60. Preston-Martin S, Pike MC, Ross RK et al (1990) Increased Cell Division as a Cause of Human Cancer. Cancer Res 50:7415–7421

    CAS  PubMed  Google Scholar 

  61. Simonsson S, Gurdon J (2004) DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nature Cell Biology 6:984–990. https://doi.org/10.1038/ncb1176

    Article  CAS  PubMed  Google Scholar 

  62. Lapeyre J-N, Becker FF (1979) 5-Methylcytosine content of nuclear DNA during chemical hepatocarcinogenesis and in carcinomas which result. Biochemical and Biophysical Research Communications 87:698–705. https://doi.org/10.1016/0006-291X(79)92015-1

    Article  CAS  PubMed  Google Scholar 

  63. Riggs AD, Jones PA (1983) 5-Methylcytosine, Gene Regulation, and Cancer. In: Klein G, Weinhouse S (eds) Advances in Cancer Research. Academic Press, pp 1–30

    Google Scholar 

  64. Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92. https://doi.org/10.1038/301089a0

    Article  CAS  PubMed  Google Scholar 

  65. Drahovsky D, Morris NR (1972) The mechanism of action of rat liver DNA methylase: III. Nucleotide requirements for binding and methylation. Biochimica et Biophysica Acta (BBA)—Nucleic Acids and Protein Synthesis 277:245–250. https://doi.org/10.1016/0005-2787(72)90404-2

    Article  CAS  Google Scholar 

  66. Wilson VL, Jones PA (1983) Inhibition of DNA methylation by chemical carcinogens in vitro. Cell 32:239–246. https://doi.org/10.1016/0092-8674(83)90514-7

    Article  CAS  PubMed  Google Scholar 

  67. Wilson VL, Smith RA, Longoria J et al (1987) Chemical carcinogen-induced decreases in genomic 5-methyldeoxycytidine content of normal human bronchial epithelial cells. Proc Natl Acad Sci U S A 84:3298–3301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vaz M, Hwang SY, Kagiampakis I et al (2017) Chronic Cigarette Smoke-Induced Epigenomic Changes Precede Sensitization of Bronchial Epithelial Cells to Single-Step Transformation by KRAS Mutations. Cancer Cell 32:360–376.e6. https://doi.org/10.1016/j.ccell.2017.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Noushmehr H, Weisenberger DJ, Diefes K et al (2010) Identification of a CpG Island Methylator Phenotype that Defines a Distinct Subgroup of Glioma. Cancer Cell 17:510–522. https://doi.org/10.1016/j.ccr.2010.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Linehan WM et al (2016) Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. New England Journal of Medicine 374:135–145. https://doi.org/10.1056/NEJMoa1505917

    Article  CAS  Google Scholar 

  71. Hoadley KA, Yau C, Hinoue T et al (2018) Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell 173:291–304.e6. https://doi.org/10.1016/j.cell.2018.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu Y, Sethi NS, Hinoue T et al (2018) Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer Cell 33:721–735.e8. https://doi.org/10.1016/j.ccell.2018.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mays-Hoopes LL, Brown A, Huang RC (1983) Methylation and rearrangement of mouse intracisternal a particle genes in development, aging, and myeloma. Molecular and Cellular Biology 3:1371–1380. https://doi.org/10.1128/MCB.3.8.1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ahuja N, Li Q, Mohan AL et al (1998) Aging and DNA Methylation in Colorectal Mucosa and Cancer. Cancer Res 58:5489–5494

    CAS  PubMed  Google Scholar 

  75. Maegawa S, Hinkal G, Kim HS et al (2010) Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 20:332–340. https://doi.org/10.1101/gr.096826.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Horvath S, Raj K (2018) DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews Genetics 19:371–384. https://doi.org/10.1038/s41576-018-0004-3

    Article  CAS  PubMed  Google Scholar 

  77. Teschendorff AE, Menon U, Gentry-Maharaj A et al (2010) Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 20:440–446. https://doi.org/10.1101/gr.103606.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhou W, Dinh HQ, Ramjan Z et al (2018) DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nat Genet 50:591–602. https://doi.org/10.1038/s41588-018-0073-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bollati V, Baccarelli A, Hou L et al (2007) Changes in DNA Methylation Patterns in Subjects Exposed to Low-Dose Benzene. Cancer Res 67:876–880. https://doi.org/10.1158/0008-5472.CAN-06-2995

    Article  CAS  PubMed  Google Scholar 

  80. Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature 500:415–421. https://doi.org/10.1038/nature12477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiedemann, R.L., Liang, G., Jones, P.A. (2022). The Human Epigenome. In: Michels, K.B. (eds) Epigenetic Epidemiology. Springer, Cham. https://doi.org/10.1007/978-3-030-94475-9_1

Download citation

Publish with us

Policies and ethics