Abstract
Analogical reasoning has been thought for a longtime as something aside, away from logical reasoning. However, it is not exactly so. This chapter in its first part mainly surveys works of the last decade, which have proposed a logical modeling of analogical proportions (i.e., statements of the form “a is to b as c is to d”) among other logically expressible proportions and have shown their use in analogical inference. It also emphasizes the pervasiveness of analogical proportions as soon as we compare situations. The second part of the chapter shows that dichotomous trees built from pairs of mutually exclusive properties have also a reading in terms of Boolean analogical proportions, thus providing another clue of the links existing between analogy and logically expressed taxonomies. This also gives birth to noticeable opposition structures and can be related to formal concept analysis.
Keywords
- Analogical reasoning
- Analogical proportion
- Taxonomic tree
- Structure of opposition
- Formal concept analysis
- Comparison
Mathematics Subject Classification (2000)
- Primary 03B99; Secondary 03A99
- 03B05
- 97F80
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
Other patterns can be obtained by combination. This in particular the case of the Joint method of agreement and difference:
A B C occur together with x y z,
A D E occur together with x v w also B C occur with y z
—————————————————————————————
Therefore A is the cause, or the effect, or a part of the cause of x.
- 2.
- 3.
The third conjunct is unfortunately missing in [1].
- 4.
This subsection follows from an idea suggested by Bernhard Ganter to the second author.
References
Barbot, N., Miclet, L., Prade, H.: The analogical cube of opposition. In: Béziau, J.Y., Buchsbaum, A., Vandoulakis, I. (eds.) Handbook of abstracts of the 6th World Congress on the Square of Opposition, Crete, Nov. 1–5, pp. 9–10 (2018)
Barbot, N., Miclet, L., Prade, H.: Relational proportions between objects and attributes. In: Kuznetsov, S.O., Napoli, A., Rudolph, S. (eds.) Proc. 6th Int. Workshop “What can FCA do for Artificial Intelligence?”, co-located with (IJCAI/ECAI 2018), Stockholm, Sweden, July 13. CEUR Workshop Proc., vol. 2149, pp. 33–44 (2018)
Béziau, J.Y.: New light on the square of oppositions and its nameless corner. Logical Investigations 10, 218–233 (2003)
Bounhas, M., Prade, H., Richard, G.: Analogical classification: A new way to deal with examples. In: ECAI 2014 - 21st European Conference on Artificial Intelligence, 18–22 August 2014, Prague, Czech Republic. Frontiers in Artificial Intelligence and Applications, vol. 263, pp. 135–140. IOS Press (2014)
Bounhas, M., Prade, H., Richard, G.: Analogical classification: Handling numerical data. In: Straccia, U., Calì, A. (eds.) Proc. of Scalable Uncertainty Management - 8th Int. Conf., SUM. LNCS, vol. 8720, pp. 66–79. Springer (2014)
Bounhas, M., Prade, H., Richard, G.: Analogy-based classifiers for nominal or numerical data. Int. J. Approx. Reasoning 91, 36–55 (2017)
Ciucci, D., Dubois, D., Prade, H.: Structures of opposition induced by relations - The Boolean and the gradual cases. Ann. Math. Artif. Intell. 76(3–4), 351–373 (2016)
Couceiro, M., Hug, N., Prade, H., Richard, G.: Analogy-preserving functions: A way to extend Boolean samples. In: Proc. 26th Int. Joint Conf. on Artificial Intelligence (IJCAI’17), Melbourne (2017)
Dastani, M., Indurkhya, B., Scha, R.: Analogical projection in pattern perception. J. of Experimental and Theoretical Artificial Intelligence 15(4), 489–511 (2003)
Davies, T.R., Russell, S.J.: A logical approach to reasoning by analogy. In: McDermott, J.P. (ed.) Proc. of the 10th International Joint Conference on Artificial Intelligence (IJCAI’87), Milan, pp. 264–270. Morgan Kaufmann (1987)
Dorolle, M.: Le Raisonnement par Analogie. PUF, Paris (1949)
Dubois, D., Prade, H.: From Blanché’s hexagonal organization of concepts to formal concept analysis and possibility theory. Logica Universalis 6(1–2), 149–169 (2012)
Falkenhainer, B., Forbus, K.D., Gentner, D.: The structure-mapping engine: algorithm and examples. Artif. Intell. 41(1), 1–63 (1989)
Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer-Verlag (1999)
Gentner, D.: Structure-mapping: A theoretical framework for analogy. Cognitive Science 7(2), 155–170 (1983)
Gentner, D.: The mechanisms of analogical learning. In: Vosniadou, S., Ortony, A. (eds.) Similarity and Analogical Reasoning, pp. 197–241. Cambridge University Press, New York (1989)
Gentner, D., Holyoak, K.J., Kokinov, B.N.: The Analogical Mind: Perspectives from Cognitive Science. Cognitive Science, and Philosophy, MIT Press, Cambridge, MA (2001)
Gust, H., Kühnberger, K., Schmid, U.: Metaphors and heuristic-driven theory projection (HDTP). Theoretical Computer Science 354(1), 98–117 (2006)
Hesse, M.: On defining analogy. Proceedings of the Aristotelian Society 60, 79–100 (1959)
Hofstadter, D., Mitchell, M.: The Copycat project: A model of mental fluidity and analogy-making. In: Hofstadter, D., The Fluid Analogies Research Group (eds.) Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought. pp. 205–267. Basic Books, Inc., New York, NY (1995)
Hug, N., Prade, H., Richard, G., Serrurier, M.: Analogical classifiers: A theoretical perspective. In: Kaminka, G., Fox, M., Bouquet, P., Hüllermeier, E., Dignum, V., Dignum, F., van Harmelen, F. (eds.) Proc. 22nd Europ. Conf. on Artificial Intelligence (ECAI’16) , The Hague, 29 Aug.-2 Sept. pp. 689–697. IOS Press (2016)
Hwang, S.J., Grauman, K., Sha, F.: Analogy-preserving semantic embedding for visual object categorization. In: Proc. 30th Int. Conf. on Machine Learning - Volume 28. pp. III–639–III–647. JMLR.org (2013)
Jing, L., Lu, Y., Gang, H., Sing Bing, K.: Visual attribute transfer through deep image analogy. In: ACM Transactions on Graphics, (Proc. of Siggraph). vol. 36 (2017)
Kalinowski, G.: Sur l’inférence par analogie. Du catalogue à l’analogue. Recueil de Textes du Groupe de Travail sur l’Analogie n ∘2, 1–8 (UA 962 CNRS, Conseil d’Etat, 1980)
Klein, S.: Analogy and mysticism and the structure of culture (and Comments & Reply). Current Anthropology 24 (2), 151–180 (1983)
Langius, I.C.: Inventvm Novvm Quadrati Logici Vniversalis […] (1714), Gissa Hassorum: Henningius Mllerus
Lemanski, J.: Logic diagrams in the Weigel and Weise circles. History and Philosophy of Logic 39 (1), 3–28 (2018)
Lepage, Y.: Analogy and formal languages. Electr. Not.Theor. Comp. Sci. 53, 180–191 (2002), proc. joint meeting of the 6th Conf. on Formal Grammar and the 7th Conf. on Mathematics of Language, (L. S. Moss, R. T. Oehrle, eds.)
Lorrain, F.: Réseaux Sociaux et Classifications Sociales. Essai sur l’Algèbre et la Géométrie des Structures Sociales. Hermann, Paris (1975)
Miclet, L., Bayoudh, S., Delhay, A.: Analogical dissimilarity: Definition, algorithms and two experiments in machine learning. J. Artif. Intell. Res. (JAIR) 32, 793–824 (2008)
Miclet, L., Delhay, A.: Relation d’analogie et distance sur un alphabet défini par des traits. Tech. Rep. 1632, IRISA (July 2004)
Miclet, L., Nicolas, J.: From formal concepts to analogical complexes. In: Ben Yahia, S., Konecny, J. (eds.) Proc. 12th Int. Conf. on Concept Lattices and Their Applications, Clermont-Ferrand, Oct.13–16. CEUR Workshop Proc., vol. 1466, pp. 159–170 (2015)
Miclet, L., Prade, H.: Handling analogical proportions in classical logic and fuzzy logics settings. In: Proc. 10th Eur. Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’09),Verona. pp. 638–650. Springer, LNCS 5590 (2009)
Mitchell, M.: Analogy-Making as Perception: A Computer Model. MIT Press, Cambridge MA (1993)
Mitchell, M.: Analogy-making as a complex adaptive system. In: Segel, L., Cohen, I. (eds.) Design Principles for the Immune System and Other Distributed Autonomous Systems. Oxford University Press (2001)
Parsons, T.: The traditional square of opposition. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University (2017)
Prade, H., Richard, G.: Cataloguing/analogizing: A non monotonic view. Int. J. Intell. Syst. 26(12), 1176–1195 (2011)
Prade, H., Richard, G.: From analogical proportion to logical proportions. Logica Universalis 7(4), 441–505 (2013)
Prade, H., Richard, G.: Homogenous and heterogeneous logical proportions. IfCoLog J. of Logics and their Applications 1(1), 1–51 (2014), reprinted in Handbook of Philosophical Logic - Volume 18 (D. M. Gabbay and F. Guenthner, series editors), Springer Verlag, 51–103, 2018
Prade, H., Richard, G.: Analogical proportions: From equality to inequality. Int. J. Approx. Reasoning 101, 234–254 (2018)
Prade, H., Richard, G.: Multiple-valued logic interpretations of analogical, reverse analogical, and paralogical proportions. In: Proc. 40th IEEE Int. Symp. on Multiple-Valued Logic (ISMVL’10). pp. 258–263 (Barcelona, 2010)
Reichenbach, H.: The syllogism revised. Philosophy of Science 19 (1), 1–16 (1952)
Russell, S.J.: The Use of Knowledge in Analogy and Induction. Pitman, UK (1989)
Stuart Mill, J.: A System of Logic, Ratiocinative and Inductive, being a connected view of the principles of evidence and the methods of scientific investigation. John W. Parker, London (1843), 2 vols.: XVI + 580, XII + 624 pp.; republished by University of Toronto Press, Routledge & Kegan Paul, 1974.
Barbot, N., Miclet, l.: La proportion analogique dans les groupes. Applications aux permutations et aux matrices. [Research Report] PI 1914, 2008, pp. 27. 〈inria-00366929〉
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Barbot, N., Miclet, L., Prade, H., Richard, G. (2022). Analogical Proportions and Binary Trees. In: Béziau, JY., Desclés, JP., Moktefi, A., Pascu, A.C. (eds) Logic in Question. Studies in Universal Logic. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-94452-0_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-94452-0_22
Published:
Publisher Name: Birkhäuser, Cham
Print ISBN: 978-3-030-94451-3
Online ISBN: 978-3-030-94452-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)