Skip to main content

Timing and Synchronization

  • Chapter
  • First Online:
Low-Level Radio Frequency Systems

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

  • 1182 Accesses

Abstract

The subsystems of a particle accelerator must be turned on in a proper sequence to perform successful beam acceleration. Furthermore, the charged particles must interact with the RF fields (or the laser fields in case of laser-plasma acceleration is used) at the correct time for the desired accelerating phase. The timing and synchronization systems guarantee the required timing relations between the RF fields and the beam. The timing system defines the timing events and produces triggers if required for different subsystems to start or stop their operation. The synchronization system provides a common frequency and phase reference to all subsystems. We will introduce the basic concepts and architecture of the timing and synchronization systems in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bellaveglia M (2016) Timing and synchronization. In: Proceedings of the CERN accelerator school on FELs and ERLs, Hamburg, Germany, 31 May-10 June 2016

    Google Scholar 

  • Best RE (2007) Phase-locked loops: design, simulations, and applications, 6th edn. McGraw-Hill Education, New York

    Google Scholar 

  • Byrd J M, Doolittle L, Huang G et al (2010) Femtosecond synchronization of laser systems for the LCLS. In: Proceedings of the 1st international particle accelerator conference, Kyoto, Japan, 23-28 May 2010

    Google Scholar 

  • Chernousko Y, Gonias A, Heron M T et al (2006) The timing system for diamond light source. In: Proceedings of the 10th European particle accelerator conference, Edinburgh, Scotland, 26-30 June 2006

    Google Scholar 

  • Czuba K, Sikora D (2011) Temperature stability of coaxial cables. Acta Physica Polonica A 119(4):333–337. https://doi.org/10.12693/APhysPolA.119.553

    Article  Google Scholar 

  • Czuba K, Sikora D, Zembala L et al (2013) Overview of the RF synchronization system for the European XFEL. In: Proceedings of the 4th international particle accelerator conference, Shanghai, China, 12-17 May 2013

    Google Scholar 

  • Czuba K, Berlinski J, Czuba L et al (2018) Concept of the phase reference line for the European Spallation Source. In: Proceedings of the 22ed international microwave and radar conference, Poznan, Poland, 14-17 May 2018

    Google Scholar 

  • Damerau H (2017) Timing, synchronization & longitudinal aspects. In: Proceedings of the CERN accelerator school on beam injection, extraction and transfer, Erice, Italy, 10–19 March 2017

    Google Scholar 

  • Doolittle L, Huang G, Ratti A et al (2015) The LCLS-II LLRF system. In: Proceedings of the 6th international particle accelerator conference, Richmond, VA, USA, 3-8 May 2015

    Google Scholar 

  • Dusatko J, Allison S, Browne M et al (2010) The LCLS timing event system. In: Proceedings of the 14th beam instrumentation workshop , Santa Fe, NM, USA, 2–6 May 2010

    Google Scholar 

  • Frisch J, Brown D, Cisneros E (2000) Performance of the prototype NLC RF phase and timing distribution system. In: Proceedings of the 9th beam instrumentation workshop, Cambridge, MA, USA, 8-11 May 2000

    Google Scholar 

  • Gallo A (2018) Timing and synchronization. In: Proceedings of the CERN accelerator school beam instrumentation, Tuusula, Finland, 2-15 June 2018

    Google Scholar 

  • Gasowski B, Owczarek T, Czuba K et al (2018) Real-time redundancy for the 1.3 GHz master oscillator of the European XFEL. https://arxiv.org/abs/1806.09281. Accessed 03 June 2021

  • Geng Z (2020) Robustness issues of timing and synchronization for free electron lasers. Nuclear Inst Methods Phys Res A 963:163738. https://doi.org/10.1016/j.nima.2020.163738

    Article  Google Scholar 

  • https://en.wikipedia.org/wiki/Crystal_oven

  • https://white-rabbit.web.cern.ch

  • https://www.rohde-schwarz.com/ch/produkt/sma100b-produkt-startseite_63493-427776.html

  • Hunziker S, Arsov V, Buechi F et al (2014) Reference distribution and synchronization system for SwissFEL: concept and first results. In: Proceedings of the 3rd international beam instrumentation conference, Monterey, CA, USA, 14-18 September 2014

    Google Scholar 

  • Jobe RK, Schwarz HD (1989) RF phase distribution systems at the SLC. In: Proceedings of the 13th particle accelerator conference, Chicago, IL, USA, 20-23 March 1989

    Google Scholar 

  • Jung K, Kim J (2012) Sub-femtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers. Opt Lett 37(14):2958–2960. https://doi.org/10.1364/OL.37.002958

    Article  ADS  Google Scholar 

  • Kalantari B, Biffiger R (2017) SwissFEL timing system: first operational experience. In: Proceedings of the 16th int conf on accelerator and large experimental control systems, Barcelona, Spain, 8-13 October 2017

    Google Scholar 

  • Korhonen T (1999) Review of accelerator timing systems. In: Proceedings of the 7th international conference on accelerator and large experimental physics control systems, Trieste, Italy, 4-8 October 1999

    Google Scholar 

  • Lamb T, Felber M, Kozak T et al (2019) Femtosecond laser to RF synchronization and RF reference distribution at the European XFEL. In: Proceedings of the 39th international free-electron laser conference, Hamburg, Germany, 26-30 August 2019

    Google Scholar 

  • Lin Z, Du Y, Yang J et al (2018a) Development of sub-100 femtosecond timing and synchronization system. Rev Sci Instrum 89:014701. https://doi.org/10.1063/1.5001768

    Article  ADS  Google Scholar 

  • Lin Z, Yang J, Du Y et al (2018b) A novel double sideband-based phase averaging line for phase reference distribution system. In: Proceedings of the 9th international particle accelerator conference, Vancouver, BC, Canada, 29 April-4 May 2018

    Google Scholar 

  • Liu F, Lei G, Duan Z et al (2021) The design of HEPS global timing system. Radiat Detect Technol Methods 2021. https://doi.org/10.1007/s41605-021-00257-6

  • Loehl F (2011) Timing and synchronization. In: Proceedings of the CERN accelerator school on advanced accelerator physics, Chios, Greece, 18-30 September 2011

    Google Scholar 

  • Lorbeer B, Ludwig F, Schlarb H et al (2007) Noise and drift characterization of direct laser to RF conversion scheme for the laser based synchronization system for FLASH at DESY. In: Proceedings of the 22ed particle accelerator conference, Albuquerque, NM, USA, 25-29 June 2007

    Google Scholar 

  • Mehrotra A (2002) Noise analysis of phase-locked loops. IEEE Trans Circuits Syst I Fundam Theory Appl 49(9):1309–1316. https://doi.org/10.1109/TCSI.2002.802347

    Article  Google Scholar 

  • Peng MY, Kalaydzhyan A, Kaertner FX (2014) Balanced optical-microwave phase detector for sub-femtosecond optical-RF synchronization. Opt Express 22(22):27103. https://doi.org/10.1364/OE.22.027102

    Article  ADS  Google Scholar 

  • Rose C R, Lara P D, Merl R et al (2001) A timing-reference generator for power-grid-synchronized neutron-spallation facilities. In: Proceedings of the 2001 particle accelerator conference, Chicago, IL, USA, 18-22 June 2001

    Google Scholar 

  • Rybarcyk LJ, Shelley FE (1997) Improvement to the LANSCE accelerator timing system. In: Proceedings of the 1997 particle accelerator conference, Vancouver, Canada, 12-16 May 1997

    Google Scholar 

  • Schlarb H (2013) Timing and synchronization. In: Proceedings of the CERN accelerator school on advanced accelerator physics, Trondheim, Norway, 18-29 August 2013

    Google Scholar 

  • Schulz S, Schmueser P, Zemella J et al (2008) An optical cross-correlation scheme to synchronize distributed laser systems at FLASH. In: Proceedings of 11th European particle accelerator conference, Genoa, Italy, 23-27 June 2008

    Google Scholar 

  • Serrano J, Alvarez P, Lipinski M et al (2011) Accelerator timing systems overview. In: Proceedings of the 2011 particle accelerator conference, New York, USA, 28 March-1 April 2011

    Google Scholar 

  • Sikora D, Czuba K, Jatczak P et al (2020) Phase drift compensating RF link for femtosecond synchronization of E-XFEL. IEEE Trans Nucl Sci 67(9):2136–2142. https://doi.org/10.1109/TNS.2020.2966018

    Article  ADS  Google Scholar 

  • Titberidze M (2017) Pilot study of synchronization on a femtosecond scale between the electron gun REGAE and a laser-plasma accelerator. Ph.D. thesis, Hamburg University

    Google Scholar 

  • Urbanski M, Jatczak P, Sikora D et al (2018) Frequency divider module for the European XFEL phase reference signal distribution system. In: Proceedings of the 22nd international microwave and radar conference, Poznan, Poland, 14-17 May 2018

    Google Scholar 

  • Vargas EC, Kaertner FX, Berlin A et al (2019) Timing stability comparison study of RF synthesis techniques. In: Proceedings of the 39th international free-electron laser conference, Hamburg, Germany, 26-30 August 2019

    Google Scholar 

  • Weaver JN, Hogg HA (1983) Improving the phase stability of the SLAC RF driveline network for SLC operation. IEEE Trans Nucl Sci 30(4):2234–2236. https://doi.org/10.1109/TNS.1983.4332772

    Article  ADS  Google Scholar 

  • Yang H, Jeon C-G, Jung K et al (2015) Femtosecond synchronization of 80-MHz Ti:Sapphire photocathode laser oscillator with S-band RF oscillator. In: Proceedings of the 37th international free electron laser conference, Daejeon, Korea, 23-28 August 2015

    Google Scholar 

  • Yang J, Du Y-C, Yan L-X et al (2017) Laser-RF synchronization based on digital phase detector. Nucl Sci Tech 28:57. https://doi.org/10.1007/s41365-017-0205-z

    Article  Google Scholar 

  • Zembala L, Czuba K, Gasowski B et al (2014) Master oscillator for the European XFEL. In: Proceedings of the 5th international particle accelerator conference, Dresden, Germany, 15-20 June 2014

    Google Scholar 

  • Zhang W-Y, Liu X-Q, Feng L et al (2018) 2.856 GHz microwave signal extraction from mode-locked Er-fiber lasers with sub-100 femtosecond timing jitter. Nucl Sci Tech 29:91. https://doi.org/10.1007/s41365-018-0419-8

    Article  Google Scholar 

  • Zhao LY, Yin CX, Liu DK (2008) The SSRF timing system. In: Proceedings of the 11th European particle accelerator conference, Genoa, Italy, 27-27 June 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simrock, S., Geng, Z. (2022). Timing and Synchronization. In: Low-Level Radio Frequency Systems. Particle Acceleration and Detection. Springer, Cham. https://doi.org/10.1007/978-3-030-94419-3_8

Download citation

Publish with us

Policies and ethics