Skip to main content

Defect in Carbon Nanostructures Through Electrospinning: Status and Prospect

  • Chapter
  • First Online:
Defect Engineering of Carbon Nanostructures

Abstract

A novel technique for the fabrication of nanofibers through electrospinning has proven effective in the field of nanotechnology. Nanofibers of polymers and composites produced by drawing charged threads from polymer solutions or polymer melts by the effective use of electric force have applications in daily use of the twenty-first century. But the use of metals, ceramics, carbohydrates, crystalline polysaccharides, and cellulose as a solvent for electrospinning is also gaining a popular trend now. From the development of electric force way back in the 80s to the application of these forces to draw polymers from electric charges, electrospinning is modified. The modification is so vast that structural change from needle to needleless electrospinning, from single spinneret to multiple jets is developed. Structural changes using carbon nanostructures with the change in polymer solution from inorganic to organic and from organic to herbal are also examined for several prototype applications. These modifications in characteristics leading to improved hydrophilicity, tensile strength, electrical properties and permeability prove electrospinning a worthy candidate for nanotechnology in terms of energy storage, tissue engineering and biomedical applications. These applications are proof that electrospinning has the capability of shaping technology with mass industrial productions. Referring to the applications from past to present, electrospinning has been developed by designing the machine to be more versatile, tailoring the collectors and spinnerets, using different voltages for different applications and using different polymer solutions for enhanced properties, which happen to create a benchmark assembly for developing artificial intelligence and smart materials used as an advancement in science and technology. In this chapter, the historical prospect of electrospinning, its development and modifications for the effective production of nanofibers consisting of carbon nanomaterials are discussed with suitable examples. In addition, selected engineering applications of nanofibers modified with carbon nanomaterials for biomedical, energy, environmental, sensory, agricultural, optoelectrical, and food packaging are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhardwaj, N. & Kundu, S. C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv. 28, 325–347(2010).

    Article  CAS  Google Scholar 

  2. Tucker, N. et al. The history of the science and technology of electrospinning from 1600 to 1995. J. Eng. Fibers Fabr. 7, 63-73 (1995).

    Google Scholar 

  3. Pillai, C. K. S. & Sharma, C. P. Electrospinning of Chitin and Chitosan Nanofibres. Trends Biomater. Artif. Organs. .22, 25–28 (2009).

    Google Scholar 

  4. Morton. W. J. Method of dispersing fluids. US Pat 705691, 28,131–134, (1902).

    Google Scholar 

  5. Agarwal, S., Wendorff, J. H. & Greiner, A. Use of electrospinning technique for biomedical applications. Polymer (Guildf) 49, 5603–5621(2008).

    Article  CAS  Google Scholar 

  6. Shoba, E., Lakra, R., Kiran, M.S. and Korrapati, P.S., 2017. Fabrication of core–shell nanofibers for controlled delivery of bromelain and salvianolic acid B for skin regeneration in wound therapeutics. Biomedical Materials, 12(3), p.035005.

    Google Scholar 

  7. Li, G. et al. Laminin-coated electrospun regenerated silk fibroin mats promote neural progenitor cell proliferation , differentiation , and survival in vitro. Front. Bioeng. Biotechnol.7, 190 (2019).

    Article  Google Scholar 

  8. Mokhtari, F., Latifi, M. & Shamshirsaz, M. Electrospinning / electrospray of polyvinylidene fluoride ( PVDF ): piezoelectric nanofibers. J. Text. Inst. 107, 1037-1055 (2016).

    CAS  Google Scholar 

  9. Kai, D., Shy, S. & Jun, X. Biodegradable polymers for electrospinning : Towards biomedical applications. Mater. Sci. Eng. C 45, 659–670(2014).

    Article  CAS  Google Scholar 

  10. Bhushani, J. A. Electrospinning and electrospraying techniques : Potential food based applications. Trends Food Sci. Technol. 38, 21-33 (2014)

    Article  Google Scholar 

  11. Sun, J. et al. Nanofibers by Green Electrospinning of Aqueous Suspensions of Biodegradable Block Copolyesters for Applications in Medicine , Pharmacy and Agriculture. Macromol. Rapid Commun. 31, 2077–2083 (2010).

    Article  CAS  Google Scholar 

  12. Konwarh, R., Karak, N. and Misra, M., 2013. Electrospun cellulose acetate nanofibers: the present status and gamut of biotechnological applications. Biotechnology advances, 31(4), pp.421-437.

    Article  CAS  Google Scholar 

  13. Yang, Z., Peng, H., Wang, W. & Liu, T. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 116, 2658–2667 (2010).

    CAS  Google Scholar 

  14. Zhang, C., Feng, F. & Zhang, H. Emulsion electrospinning: Fundamentals, food applications and prospects. Trends Food Sci. Technol. 80, 175-186 (2018).

    Article  CAS  Google Scholar 

  15. Frenot, A. & Chronakis, I.S. Polymer nanofibers assembled by electrospinning. Curr Opin. Colloid. Interface Sci. 8, 64–75 (2003).

    Article  CAS  Google Scholar 

  16. Nikmaram, N., Roohinejad, S., Hashemi, S., Koubaa, M., Barba, F.J., Abbaspourrad, A. and Greiner, R.,. Emulsion-based systems for fabrication of electrospun nanofibers: Food, pharmaceutical and biomedical applications. RSC advances 7,28951-28964 (2017).

    Article  CAS  Google Scholar 

  17. Bhushan, B. Introduction to nanotechnology: history, status, and importance of nanoscience and nanotechnology education. Glob. Perspect. Nanosci. Edu., 1–31 (2016).

    Google Scholar 

  18. Agarwal, B. S., Wendorff, J. H. & Greiner, A. Progress in the field of electrospinning for tissue engineering applications. Adv. Mater. 21, 3343–3351(2009).

    Article  CAS  Google Scholar 

  19. Dong, Z., Kennedy, S. J. & Wu, Y. Electrospinning materials for energy-related applications and devices. J. Power. Sources 196, 4886–4904(2011).

    Article  CAS  Google Scholar 

  20. Sill, T. J. & Von Recum, H. A. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 29, 1989–2006 (2008).

    Article  CAS  Google Scholar 

  21. Wade, R. J. & Burdick, J. A. Advances in nanofibrous scaffolds for biomedical applications : From electrospinning to self-assembly. Nano Today 9, 722–742(2014).

    Article  CAS  Google Scholar 

  22. Ji, X., Xu, Y., Zhang, W., Cui, L. and Liu, J., 2016. Review of functionalization, structure and properties of graphene/polymer composite fibers. Composites Part A: Applied Science and Manufacturing, 87, pp.29-45.

    Article  CAS  Google Scholar 

  23. Navarro-Pardo, F., Martinez-Hernandez, A.L. and Velasco-Santos, C., 2016. Carbon nanotube and graphene based polyamide electrospun nanocomposites: a review. Journal of Nanomaterials, 2016.

    Google Scholar 

  24. Kleivaite, V. & Milašius, R. Electrospinning - 100 years of investigations and still open questions of web structure estimination. Autex Res. J. 18, 398-404 (2018).

    Article  Google Scholar 

  25. Figen, A. K. History, basics, and parameters of electrospinning technique. Electrospun. Mater. Their Allied Appl., 53–69 (2020).

    Google Scholar 

  26. Ralston, O. C. Practical applications of electrostatic phenomena to particulate matter. Trans. Am. Inst. Electr. Eng. Part I Commun. Electron. 75, 155–159 (2013).

    Google Scholar 

  27. Teo, W. E. & Ramakrishna, S. A review on electrospinning design and nanofibre assemblies. Nanotechnology 17, R 89 (2006).

    Google Scholar 

  28. Dawson, D.M., Hiremath, S., Mahmoodi, N., Saeidpourazar, R. and Aphale, S., 1974. Distributed Sensors and Actuators via Electronic-Textiles. Appl. Phys, 45(3768).

    Google Scholar 

  29. Sarmah, S. & Tamuli, R.P. Conducting Polymers: Biomedical Engineering Applications. Encycl. Biomed. Polym. Polym. Biomater., 1982–1996 (2016).

    Google Scholar 

  30. Asmatulu, R. & Khan, W. S. Synthesis and applications of electrospun nanofibers. Synth Appl. Electrospun. Nanofibers, 1–306 (2018).

    Google Scholar 

  31. Detecting the Rouse and sub-Rouse modes in poly (butyl acrylate) and poly (ethyl acrylate) through two-dimensional dynamic mechanical spectra. Journal of Macromolecular Science, Part B, 53(10), pp.1642–1653.

    Google Scholar 

  32. Doshi, J. and Reneker, D.H., 1995. Electrospinning process and applications of electrospun fibers. Journal of electrostatics, 35(2-3), pp.151-160.

    Article  CAS  Google Scholar 

  33. Gibson, P., Schreuder-Gibson, H. & Pentheny, C. Electrospinning technology: Direct application of tailorable ultrathin membranes. J. Ind. Text. 28, 63–72 (1998).

    CAS  Google Scholar 

  34. Brown, T. D., Dalton, P. D. & Hutmacher, D. W. Melt electrospinning today: An opportune time for an emerging polymer process. Prog. Polym. Sci. 56,116–166 (2016).

    Article  CAS  Google Scholar 

  35. Zhang, L. H. Recent advances in melt electrospinning. RSC Adv. 6, 53400–53414 (2016).

    Article  CAS  Google Scholar 

  36. Agarwal, S. & Greiner A. On the way to clean and safe electrospinning-green electrospinning: Emulsion and suspension electrospinning. Polym. Adv. Technol. 22, 372–378 (2011).

    Article  CAS  Google Scholar 

  37. Liverani, L., Vester, L. & Boccaccini, A. R. Electrospun biomaterials and related technologies. electrospun. Biomater. Relat. Technol., 149–168 (2017).

    Google Scholar 

  38. He, J. H., Liu, Y. & Xu, L. Apparatus for preparing electrospun nanofibres: A comparative review. Mater. Sci. Technol. 26, 1275–1287 (2010).

    Article  CAS  Google Scholar 

  39. Varesano, A., Carletto, R. A. & Mazzuchetti, G . Experimental investigations on the multi-jet electrospinning process. J. Mater. Process. Technol. 209, 5178–5185 (2009).

    Article  CAS  Google Scholar 

  40. Niu, H. & Lin, T. Fiber generators in needleless electrospinning. J Nanomater, 2012 (2012).

    Google Scholar 

  41. Liu, C. K. et al. Preparation of short submicron-fiber yarn by an annular collector through electrospinning. Mater. Lett. 62, 4467–4469(2008).

    Article  CAS  Google Scholar 

  42. Katta, P., Alessandro, M., Ramsier, R. D. & Chase, G. G. Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Lett. 4, 2215–2218(2004).

    Article  CAS  Google Scholar 

  43. Alfaro De Prá, M. A., Ribeiro-do-Valle, R. M., Maraschin, M. & Veleirinho, B. Effect of collector design on the morphological properties of polycaprolactone electrospun fibers. Mater. Lett. 193, 154–157(2017).

    Google Scholar 

  44. Babar, A. A., Iqbal, N., Wang, X., Yu, J. & Ding, B. Introduction and historical overview. In Electrospinning: Nanofabrication and applications. William Andrew Publishing, 3–20 (2019).

    Google Scholar 

  45. Ghosal, K., Agatemor, C. Tucker, N. & Kny, E. Electrical spinning to electrospinning: A brief history, in Electrospinning: From Basic Research to Commercialization, 1–23 (2018).

    Google Scholar 

  46. Cook, J. G. Handbook of Textile Fibres, Volume 1: Natural Fibres. Elsevier (1984).

    Google Scholar 

  47. Parsons, J. L. Count Hilaire De Chardonnet, Scientist and Inventor. Ind. Eng. Chem. 17, 754–755 (1925).

    Article  CAS  Google Scholar 

  48. Carothers, W.H. and Hill, J.W., 1932. Studies of polymerization and ring formation. XV. Artificial fibers from synthetic linear condensation superpolymers. Journal of the American Chemical Society, 54(4), pp.1579–1587.

    Google Scholar 

  49. Hutmacher, D. W., Dalton P. D. Melt electrospinning. Chem. An Asian J. 6, 44–56 (2011).

    Article  CAS  Google Scholar 

  50. Katz, R. United States: UNITED STATES. Eur. J. Polit. Res. Polit. Data Yearbook 54, 309–315 (2016).

    Google Scholar 

  51. Owens, J. E. & Scheinberg, S. P. Apparatus for collecting fibrous material in sheet form, USA, Patent No. 3490115 (1970).

    Google Scholar 

  52. Lin, T. Needleless electrospinning: A practical way to mass production of nanofibers. J Text. Sci. Eng. 2, 2–4 (2012).

    Google Scholar 

  53. Rangkupan, R. & Reneker, D. H. Electrospinning process of molten polypropylene in vacuum. J. Met. Mater. Miner. 12, 81–87 (2003). https://doi.org/10.4172/2165-8064.1000e109

    CAS  Google Scholar 

  54. Martin, G. E., Cockshott, I. D., & Fildes, F. J. T. Fibrillar lining for prosthetic device USA, Patent No 4044404A (1977).

    Google Scholar 

  55. Thien V. How. Synthetic vascular grafts, and methods of manufacturing such grafts, USA, Patent No. 4552707A (1985).

    Google Scholar 

  56. Yang, J. et al. Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Mater. Sci. Eng. C 111, 110805 (2020).

    Google Scholar 

  57. Zhu, C. et al. Novel antibacterial fibers of amphiphilic N-halamine polymer prepared by electrospinning. Polym. Adv. Technol. 30, 1386–1393 (2019).

    Article  CAS  Google Scholar 

  58. Augustine, R. et al. Titanium Nanorods Loaded PCL Meshes with enhanced blood vessel formation and cell migration for wound dressing applications. Macromol. Biosci. 7, 1900058 (2019).

    Article  Google Scholar 

  59. Grumezescu, A. M. et al. Electrospun polyethylene terephthalate nanofibers loaded with silver nanoparticles: Novel approach in anti-infective therapy. J. Clin. Med. 8, 1039 (2019).

    Article  CAS  Google Scholar 

  60. Karagoz, S. et al. Synthesis of Ag and TiO2 modified polycaprolactone electrospun nanofibers (PCL/TiO2-Ag NFs) as a multifunctional material for SERS, photocatalysis and antibacterial applications. Ecotoxicol. Environ. Saf. 188, 109856 (2020).

    Google Scholar 

  61. Mukheem, A. et al. Fabrication and characterization of an electrospun PHA/graphene silver nanocomposite scaffold for antibacterial applications. Materials (Basel) 11, 1–15 (2018).

    Article  Google Scholar 

  62. Kumar, N. S. et al. Electrospun polyurethane and soy protein nanofibres for wound dressing applications. Let Biotechnology 12, 94–98 (2017).

    Google Scholar 

  63. Howard, D., Buttery, L. D., Shakesheff, K. M. & Roberts, S. J. Tissue engineering: Strategies, stem cells and scaffolds. J. Anat. 213, 66–72 (2008).

    Article  CAS  Google Scholar 

  64. Tiwari, S. K., Thakur, A. K., Adhikari, A. D., Zhu, Y. & Wang, N. Current research of graphene-based nanocomposites and their application for supercapacitors. Nanomaterials 10, 2046 (2020).

    Article  CAS  Google Scholar 

  65. Alberti, T.B., Coelho, D.S., de Prá, M., Maraschin, M. and Veleirinho, B., 2020. Electrospun PVA nanoscaffolds associated with propolis nanoparticles with wound healing activity. Journal of Materials Science, 55(23), pp.9712-9727.

    Article  CAS  Google Scholar 

  66. Zhang, C., et al. The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications. J. Mech. Behav. Biomed. Mater. 53, 403–413 (2016).

    Article  CAS  Google Scholar 

  67. Safikhani, M. M., Zamanian, A. & Ghorbani, F. Synergistic effects of retinoic acid and graphene oxide on the physicochemical and in-vitro properties of electrospun polyurethane scaffolds for bone tissue engineering. e-Polymers 17, 362–371 (2017). https://doi.org/10.1515/epoly-2016-0304.

  68. He, F. et al. A novel layer-structured scaffold with large pore sizes suitable for 3D cell culture prepared by near-field electrospinning. Mater. Sci. Eng. C 86, 18-27 (2018).

    Article  CAS  Google Scholar 

  69. Kadakia, P. U. et al. Comparison of silk fibroin electrospun scaffolds with poloxamer and honey additives for burn wound applications. J. Bioact. Compat. Polym. 33, 79-94 (2017).

    Article  Google Scholar 

  70. Su, S. et al. Coaxial and emulsion electrospinning of extracted hyaluronic acid and keratin based nanofibers for wound healing applications. Eur. Polym. J. 142, 110158 (2021).

    Google Scholar 

  71. Mahoney, C., Conklin, D., Waterman. J. & Bhattarai, N. Electrospun nanofibers of poly (ε-caprolactone)/depolymerized chitosan for respiratory tissue engineering Applications. J. Biomater. Sci. Polym. Ed. 27, 611–625 (2016).

    Google Scholar 

  72. Ayyar, M., Mani, M. P., Jaganathan, S. K. & Rathanasamy, R. Preparation , characterization and blood compatibility assessment of a novel electrospun nanocomposite comprising polyurethane and ayurvedic-indhulekha oil for tissue engineering applications. J. Biomed. Eng. 63, 245-253 (2018).

    Article  CAS  Google Scholar 

  73. Cesur. S. et al. Preparation and characterization of electrospun polylactic acid / sodium alginate / orange oyster shell composite nanofiber for biomedical application. J. Aust. Ceram. Soc. 56, 533-543 (2019).

    Article  Google Scholar 

  74. So, H. S. et al. Novel lavender oil and silver nanoparticles simultaneously loaded onto polyurethane nano fi bers for wound-healing applications. Int. J. Pharm. 569, 118590 (2019).

    Google Scholar 

  75. Khan A. S. et al. Fabrication and in vivo evaluation of hydroxyapatite/carbon nanotube electrospun fibers for biomedical/dental application. Mater. Sci. Eng. C. 80, 387-396 (2017)

    Article  CAS  Google Scholar 

  76. Korani, S. et al. Application of nanotechnology to improve the therapeutic benefits of statins. Drug Discov. Today 24, 567-574 (2018).

    Article  Google Scholar 

  77. Nekounam, H., Allahyari, Z., Gholizadeh, S., Mirzaei, E., Shokrgozar, M.A. and Faridi-Majidi, R., 2020. Simple and robust fabrication and characterization of conductive carbonized nanofibers loaded with gold nanoparticles for bone tissue engineering applications. Materials Science and Engineering: C, 117, p.111226.

    Google Scholar 

  78. Abbas, W. A., Sharafeldin, I. M., Omar, M. M. & Allam, N.K. Nanoscale advances applications : computational and experimental insights. Nanoscale Adv.2 1512–1522 (2020).

    Article  CAS  Google Scholar 

  79. Adhikari, S.P., Pant, H.R., Mousa, H.M., Lee, J., Kim, H.J., Park, C.H. and Kim, C.S., 2016. Synthesis of high porous electrospun hollow TiO2 nanofibers for bone tissue engineering application. Journal of industrial and engineering chemistry, 35, pp.75-82.

    Article  CAS  Google Scholar 

  80. de Castro, J.G., Rodrigues, B.V., Ricci, R., Costa, M.M., Ribeiro, A.F., Marciano, F.R. and Lobo, A.O., 2016. Designing a novel nanocomposite for bone tissue engineering using electrospun conductive PBAT/polypyrrole as a scaffold to direct nanohydroxyapatite electrodeposition. RSC advances, 6(39), pp.32615-32623.

    Article  Google Scholar 

  81. Santocildes-Romero, M.E., Hadley, L., Clitherow, K.H., Hansen, J., Murdoch, C., Colley, H.E., Thornhill, M.H. and Hatton, P.V., 2017. Fabrication of electrospun mucoadhesive membranes for therapeutic applications in oral medicine. ACS applied materials & interfaces, 9(13), pp.11557-11567.

    Article  CAS  Google Scholar 

  82. Suryavanshi. A. et al. Magnesium oxide nanoparticle-loaded polycaprolactone composite electrospun fiber scaffolds for bone – soft tissue engineering applications: in-vitro and in-vivo evaluation Magnesium oxide nanoparticle-loaded polycaprolactone composite electrospun fiber. Biomed. Mater. 5, 055011 (2017).

    Google Scholar 

  83. Zarei, M. & Karbasi, S. Evaluation of the effects of multiwalled carbon nanotubes on electrospun poly (3-hydroxybutirate) scaffold for tissue engineering applications. J. Porous Mater. 25, 259-272 (2017).

    Article  Google Scholar 

  84. Li, P. et al. Applying electrospun gelatin / poly ( lactic acid-co-glycolic acid ) bilayered nanofibers to fabrication of meniscal. J. Nanosci. Nanotechnol. 16, 4718–4726 (2016).

    Article  Google Scholar 

  85. Rychter, M. et al. Cilostazol-loaded poly (ε -caprolactone) electrospun drug delivery system for cardiovascular applications. Pharm. Res. 35, 1-20 (2018).

    Article  CAS  Google Scholar 

  86. Dubsky. M., Lesny, P., Jirkovska. A. & Munzarova. M. Nanofibers prepared by needleless electrospinning technology as scaffolds for wound healing. J. Mater. Sci. Mater. Med. 23, 931–941(2012).

    Google Scholar 

  87. Maslakci, N.N., Ulusoy, S., Uygun, E., Çevikbaş, H., Oksuz, L., Can, H.K. and Oksuz, A.U., 2017. Ibuprofen and acetylsalicylic acid loaded electrospun PVP-dextran nanofiber mats for biomedical applications. Polymer Bulletin, 74(8), pp.3283-3299.

    Article  CAS  Google Scholar 

  88. Morsy. R., Hosny, M., Reisha, F. & Elnimr, T. Developing and physicochemical evaluation of cross-linked electrospun gelatin glycerol nanofibrous membranes for medical applications. J. Mol. Struct. 1135. 222-237 (2017).

    Article  CAS  Google Scholar 

  89. Komur, B. et al. Starch/PCL composite nanofibers by co-axial electrospinning technique for biomedical applications. Biomed. Eng.16 Online 1–13 (2017).

    Google Scholar 

  90. Li, X. et al. Electrospinning-based strategies for battery. Materials. Adv. Energy Mater. 11, 2000845 (2020).

    Article  Google Scholar 

  91. 1703237:1https://doi.org/10.1002/smll.201703237 Zeng, Z., Zhang, W., Liu, Y., Lu, P. and Wei, J., 2017. Uniformly electrodeposited α-MnO2 film on super-aligned electrospun carbon nanofibers for a bifunctional catalyst design in oxygen reduction reaction. Electrochimica Acta, 256, pp.232–240.

  92. Monaca, A. et al. Electrospun ceramic nanofibers as 1D solid electrolytes for lithium batteries. Electrochem. Commun. 104, 106483 (2019).

    Google Scholar 

  93. Zhuang, R. et al. Synthesis and characterization of electrospun molybdenum dioxide – carbon nanofibers as sulfur matrix additives for rechargeable lithium – sulfur battery applications. J. Nanotechnol. 9, 262–270 (2018).

    CAS  Google Scholar 

  94. Angel, N., Vijayaraghavan, S.N., Yan, F. and Kong, L., 2020. Electrospun cadmium selenide nanoparticles-loaded cellulose acetate fibers for solar thermal application. Nanomaterials, 10(7), p.1329.

    Article  CAS  Google Scholar 

  95. Imran, M., Haider, S., Ahmad, K., Mahmood, A. and Al-Masry, W.A., 2017. Fabrication and characterization of zinc oxide nanofibers for renewable energy applications. Arabian Journal of Chemistry, 10, pp.S1067-S1072.

    Article  CAS  Google Scholar 

  96. Kwon, Y. et al. Electrospun CuS/PVP Nanowires and superior near-infrared filtration efficiency for thermal shielding applications. ACS Appl Mater Interfaces 11, 6575–6580 (2019).

    Article  CAS  Google Scholar 

  97. Ponnamma, D., Aljarod, O., Parangusan, H. and Al-Maadeed, M.A.A., 2020. Electrospun nanofibers of PVDF-HFP composites containing magnetic nickel ferrite for energy harvesting application. Materials Chemistry and Physics, 239, p.122257.

    Google Scholar 

  98. Cheon S. et al. High-performance triboelectric nanogenerators based on electrospun polyvinylidene fluoride – silver nanowire composite nanofibers. Adv. Funct. Mater. 28, 703778 (20181).

    Google Scholar 

  99. Li, Z., Zhao, Y., Wang, X., Sun, Y., Zhao, Z., Li, Y., Zhou, H. and Chen, Q., 2018. Cost analysis of perovskite tandem photovoltaics. Joule, 2(8), pp.1559-1572.

    Article  CAS  Google Scholar 

  100. Kang, S. B. et al. Enhanced piezoresponse of highly aligned electrospun poly (vinylidene fluoride) nano fibers. Nanotechno. 28, 395402 (2017).

    Google Scholar 

  101. Szewczyk, P. K. et al. Enhanced piezoelectricity of electrospun polyvinylidene fluoride fibers for energy harvesting. ACS Appl. Mater. Interfaces 12, 13575-13583(2020).

    Article  CAS  Google Scholar 

  102. Karumuthil, S. C. et al. Electrospun poly(vinylidene fl uoride-tri fl uoroethylene)-based polymer nanocomposite fibers for piezoelectric nanogenerators. ACS Appl. Mater. Interfaces 11, 40180-40188 (2019).

    Article  Google Scholar 

  103. Adhikary, P., Biswas, A. & Mandal, D. Improved sensitivity of wearable nanogenerators made of electrospun Eu3+ doped P (VDF-HFP)/graphene composite nano fibers for self-powered voice recognition. Nanotechnology 27, 495501 (2016).

    Google Scholar 

  104. Fuh, Y. K., Wang, B. S. & Liu, B. J. Near field sequentially electrospun three-dimensional piezoelectric fibers arrays for self-powered sensors of human gesture recognition. Nano Energy 30, 677-683 (2016).

    Article  CAS  Google Scholar 

  105. Gualandi, C., Celli, A., Zucchelli, A. and Focarete, M.L., 2014. Nanohybrid materials by electrospinning. Organic-Inorganic Hybrid Nanomaterials, pp.87–142.

    Google Scholar 

  106. Kotatha, D. et al. Preparation and Characterization of electrospun gelatin nanofibers for use as nonaqueous electrolyte in electric double-layer capacitor. J. Nanotechnol., 2501039 (2019).

    Google Scholar 

  107. Pant, B., Park, M. & Park, S. TiO2 NPs Assembled into a Carbon Nanofiber Composite Electrode by a One-Step Electrospinning Process for Supercapacitor Applications. Polymers 11, 811 (2019).

    Article  Google Scholar 

  108. Dai, Y. et al. Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polym. Adv. Technol. 22, 326–338 (2011).

    Article  CAS  Google Scholar 

  109. Ghorai, S., Sarkar, A. K., Panda, A. B. & Pal, S. Effective removal of Congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent. Bioresour. Technol. 144, 485–491 (2013).

    Article  CAS  Google Scholar 

  110. Thomas, S. Chitin nanowhisker ( ChNW ) -functionalized electrospun PVDF membrane for enhanced removal of Indigo carmine. Carbohydr. Polym. 165, 115-122 (2017).

    Article  Google Scholar 

  111. Oya, N. et al. Encapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewater. Colloids Surf. B Biointerfaces 161, 169-176 (2017).

    Google Scholar 

  112. Qin, X. & Subianto, S. Electrospun nanofibers for filtration applications. Electrospun Nanofibers, Woodhead Publishing, 449–466 (2017).

    Google Scholar 

  113. Vinh, N. D & Kim, H. Electrospinning fabrication and performance evaluation of polyacrylonitrile nanofiber for air filter applications. Appl. Sci. 6, 235 (2016).

    Article  Google Scholar 

  114. Koena, M., Ojijo, V., Sadiku, R. & Sinha, S. Development of bacterial-resistant electrospun polylactide membrane for air fi ltration application : Effects of reduction methods and their loadings. Polym. Degrad. Stab. 178, 109205 (2020).

    Google Scholar 

  115. Dung, N. V. et al. CuO nanofibers prepared by electrospinning for gas sensing application : effect of copper salt concentration. J. Nanosci. Nanotechnol. 19, 7910-7918 (2016).

    Article  Google Scholar 

  116. Kumar, M. et al. Mixture of PLA-PEG and Biotinylated Albumin enables Immobilization of Avidins on Electrospun Fibers. J. Biomed. Mater. Res. A. 105, 356-362 (2017).

    Article  CAS  Google Scholar 

  117. Leonardi, S. G. et a.l A comparison of the ethanol sensing properties of α -iron oxide nanostructures prepared via the sol-gel and electrospinning techniques. Nanotechnology 27, 075502 (2016).

    Google Scholar 

  118. Almasian, A., Chizari Fard, G., Parvinzadeh Gashti, M., Mirjalili, M. and Mokhtari Shourijeh, Z., 2016. Surface modification of electrospun PAN nanofibers by amine compounds for adsorption of anionic dyes. Desalination and Water Treatment57(22), pp.10333-10348.

    Article  CAS  Google Scholar 

  119. DM Follmann, H., F Naves, A., A Araujo, R., Dubovoy, V., Huang, X., Asefa, T., Silva, R. and N Oliveira, O., 2017. Hybrid materials and nanocomposites as multifunctional biomaterials. Current pharmaceutical design, 23(26), pp. 3794–3813.

    Google Scholar 

  120. Ghosh, A., Nayak, A.K. and Pal, A., 2017. Nano-particle-mediated wastewater treatment: A review. Current Pollution Reports, 3(1), pp.17-30.

    Article  CAS  Google Scholar 

  121. Sapountzi,. E. et al. Gold nanoparticles assembly on electrospun poly (vinyl alcohol)/ poly (ethyleneimine / glucose oxidase nanofibers for ultrasensitive electrochemical glucose biosensing. Sens. Actuators B Chem. 238, 392–401(2017).

    Article  CAS  Google Scholar 

  122. Yang, C. et al. Acta Biomaterialia Electrospun pH-sensitive core – shell polymer nanocomposites fabricated using a tri-axial process. ACTA Biomater. 35, 77-86 (2016).

    Article  Google Scholar 

  123. Deitzel, J. M. et al, Generation of polymer nanofibers through electrospinning. (No ARL-TR-1989) Army Res. Lab. Aberdeen Proving Gr. Md, (1999).

    Google Scholar 

  124. Lee, S., & Obendorf, S. K. Developing protective textile materials as barriers to liquid penetration using melt-electrospinning. J. Appl. Polym. Sci. 102, 3430–3437 (2006).

    Article  CAS  Google Scholar 

  125. Serbezeanu, D. et al. Preparation and characterization of thermally stable polyimide membranes by electrospinning for protective clothing applications. Text. Res. J. 85, 1763–1775 (2015).

    Article  CAS  Google Scholar 

  126. Schreuder-Gibson, H. et al. Protective textile materials based on electrospun nanofibers. J Adv. Mater. 34, 44–55 (2002).

    Google Scholar 

  127. Gibson, P. W., Schreuder-Gibson, H. L. & Rivin, D. Electrospun fiber mats: Transport properties. AIChE J. 45, 190–195 (1999).

    Article  CAS  Google Scholar 

  128. Gashti, M. P., Pakdel, E. & Alimohammadi, F. Nanotechnology-based coating techniques for smart textiles. Active Coating for Smart Textiles, Woodhead Publishing, 243–268 (2016).

    Google Scholar 

  129. Gharehaghaji, A. A. Nanotechnology in Sport Clothing. Materials in Sports Equipment, Woohead Publishing, 521–568 (2019).

    Google Scholar 

  130. Liu, R. & Ji, D. Electrospun nano fi bers for personal protection in mines. Chem. Eng. J. 404, 126558 (2021).

    Google Scholar 

  131. Angelica, D. et al. A novel nanocomposite for food packaging developed by electrospinning and electrospraying. Food Packag. Shelf Life 20, 100314 (2019).

    Google Scholar 

  132. Rovira, F., Mas, L. C., Lorena, J. & Mayorga, C. Antimicrobial nanocomposites and electrospun coatings based on poly (3-hydroxybutyrate- co -3-hydroxyvalerate) and copper oxide nanoparticles for active packaging and coating applications. J. Appl. Polym. Sci. 135, 45673 (2018).

    Article  Google Scholar 

  133. Ebrahimi. S., Fathi, M. & Kadivar, M. Production and characterization of chitosan-gelatin nano fi bers by nozzle- less electrospinning and their application to enhance edible film’s properties. Food Packag. Shelf Life 22, 100387 (2019).

    Google Scholar 

  134. Cherpinski, A., Cabedo, L. & Lagaron, J. M. Post-processing optimization of electrospun sub- micron poly (3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Addit. Contam. Part A 34, 1817-1830 (2017).

    Article  CAS  Google Scholar 

  135. Sharma, G., Rastogi, S. & Kandasubramanian, B. Smart Electrospun Materials. Electrospun Materials and Their Allied Applications, 351–378 (2020).

    Google Scholar 

  136. Scaffaro, R., Lopresti, F., Marino, A. & Nostro, A. Antimicrobial additives for poly (lactic acid) materials and their applications : current state and perspectives.A ppl. Microbiol. Biotechnol. 102, 7739–7756 (2018).

    Google Scholar 

  137. Castro-Enríquez, D. D. et al. Preparation, characterization and release of urea from wheat gluten electrospun membranes. Materials 5, 2903–2916 (2012).

    Google Scholar 

  138. Johnson, B.A. Agriculture and Nanotechnology. Ward and Dutta. University of Wisconsin-Madison (2006).

    Google Scholar 

  139. Prasad, R., Kumar, V. & Kumar, M. Nanotechnology: Food and environmental paradigm. Nanotechnology Food Environment Paradigm. 1–344 (2017).

    Google Scholar 

  140. Corradini, E., De Moura, M. R. & Mattoso, L. H. C. A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles. Express Polym. Lett. 4, 509–515 (2010).

    Article  CAS  Google Scholar 

  141. Bulus. E., Sakarya, B. G. & Yakuphanoglu, F. Production and characterization of novel nature-friendly organic fertilizer covers based on nanotechnology for the agricultural sector. J. Mater. Electron, Devices 5, 12–16 (2010).

    Google Scholar 

  142. Bisotto-de-oliveira, R. et al. Nanofibers as a vehicle for the synthetic attactant TRIMEDLURE to be used for ceratitis capitata wied : (Diptera , Tethritidae) capture. J. Res. Updates Polym..3, 40–47 (2014).

    Article  Google Scholar 

  143. Castañeda, L. M. F., Genro, C., Roggia, I. & Bender, S. S. Innovative rice seed coating (Oryza Sativa) with polymer nanofibres and microparticles using the electrospinning method. J. Res. Updates Polym. 3, 33–39 (2014).

    Google Scholar 

  144. Bansal, P. Water-Based Polymeric Nanostructures for Agricultural Applications PhD diss., PhD Thesis. Philipps-Universität Marburg (2010).

    Google Scholar 

  145. Topçu, G., Savac, U., Genç, A. & Turan, S. Polarized emission from CsPbBr3 nanowire embedded-electrospun PU fibers. Nanotechnology 29, 135202 (2018).

    Google Scholar 

  146. Hu, Z. et al. Composite film polarizer based on the oriented assembly of electrospun nano fibers. Nanotechnology 27, 135301 (2016).

    Google Scholar 

  147. Sanfelice, R.C., Mercante, L.A., Pavinatto, A., Tomazio, N.B., Mendonça, C.R., Ribeiro, S.J., Mattoso, L.H. and Correa, D.S., 2017. Hybrid composite material based on polythiophene derivative nanofibers modified with gold nanoparticles for optoelectronics applications. Journal of Materials Science, 52(4), pp.1919-1929.

    Article  CAS  Google Scholar 

  148. Nada, A. A. et al. Mesoporous ZnFe2O4 @ TiO2 nanofibers prepared by electrospinning coupled with PECVD as highly performing photocatalytic materials mesoporous ZnFe2O4 @ TiO2 nanofibers prepared by electrospinning coupled with PECVD as Highly performing photocatalytic . J. Phys. Chem. C 121, 24669-24677 (2017).

    Article  CAS  Google Scholar 

  149. Jafarzadeh, A., Sohrabnezhad, S., Zanjanchi, M. A. & Arvand, M. Microporous and mesoporous materials synthesis and characterization of thiol-functionalized MCM-41 nano fibers and its application as photocatalyst. Microporous Mesoporous Mater. 236, 109–119 (2016).

    Article  CAS  Google Scholar 

  150. Al, Z., et al. Enhancement of electronic and optical properties of enhancement of electronic and optical properties of ZnO / Al2O3 nanolaminate coated electrospun .Nanofibers. J. Phys. Chem. C 120, 5124-5132 (2016).

    Article  Google Scholar 

Download references

Acknowledgement

SKT would like to thank NAWA and the University of Warsaw, Poland for the research grant (PPN/ULM/2019/1/00008/DEC/2) and scientific cooperation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, R. et al. (2022). Defect in Carbon Nanostructures Through Electrospinning: Status and Prospect. In: Sahoo, S., Tiwari, S.K., Das, A.K. (eds) Defect Engineering of Carbon Nanostructures. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-94375-2_8

Download citation

Publish with us

Policies and ethics