Skip to main content

Recent Progress in N-Doped Graphene: Properties and Applications

  • Chapter
  • First Online:
Defect Engineering of Carbon Nanostructures

Abstract

Graphene is a significant progress in modern research and one of the most hopeful materials used in succeeding electronic devices due to its unique characteristics. Since, graphene possess high surface area, thermal conductivity and Young’s modulus, it is mostly preferred in various engineering applications. Chemical doping of graphene using various elements like nitrogen, boron, hydrogen, etc., can lead to increase in electronic properties effectively. Nitrogen and boron doped graphene leads to fresh electronic band structure. Those doped graphene materials results in usage of materials in various application such as nanoelectronics, nanophotonics, sensor devices, green energy technology and alternative eco-friendly material for electrocatalytic applications. Nitrogen doped graphene is good donor of electron and it is used in energy related applications such as supercapacitors, fuel cells, batteries, medical domain, etc. Technical properties of N-doped graphene were determined using various techniques such as STM, TEM, SEM, AFM, XPS, Raman spectroscopy and XRD. This chapter deals with properties and various applications of nitrogen doped graphene in engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yadav, R. & Dixit, C. Synthesis, characterization and prospective applications of nitrogen-doped graphene: A short review. J.Sci-Adv. Mater. Dev. 2, 141–149 (2017).

    Google Scholar 

  2. Rao, C., Gopalakrishnan, K. & Govindaraj, A. Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements. Nano Today. 9, 324–343 (2014).

    Google Scholar 

  3. Rao, C. N. R., Sood, A. K., Subrahmanyam. K. S. & Govindaraj, A. Graphene: The new two‐dimensional nanomaterial. Angew. Chemie-Int. Ed. 48, 7752–7777 (2009).

    Google Scholar 

  4. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nanoscience and technology: A review. Nanosci. Technol. 11–19 (2010).

    Google Scholar 

  5. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett.8, 902–907 (2008).

    Article  CAS  Google Scholar 

  6. Wang, H., Maiyalagan, T. & Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2, 781–794 (2012).

    Article  CAS  Google Scholar 

  7. Wei, D. et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009).

    Article  CAS  Google Scholar 

  8. Panchakarla, L. et al. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 21, 4726–4730 (2009).

    CAS  Google Scholar 

  9. Luo, Z. et al. Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property. J. Mater. Chem. 21, 8038–8044 (2011).

    Article  CAS  Google Scholar 

  10. Ito, Y. et al. Bicontinuousnanoporous N-doped graphene for the oxygen reduction reaction. Adv. Mater. 26, 4145–4150 (2014).

    Article  CAS  Google Scholar 

  11. Mukherjee, S. & Kaloni, T. Electronic properties of boron- and nitrogen-doped graphene: A first principles study. J. Nanopart. Res. 14, 1–5 (2012).

    Google Scholar 

  12. Xu, H., Ma, L. & Jin, Z. Nitrogen-doped graphene: Synthesis, characterizations and energy applications. J. Energy Chem. 27, 146–160 (2018).

    Article  Google Scholar 

  13. Lu, Y., Huang, Y., Zhang, M. & Chen, Y. Nitrogen-doped graphene materials for supercapacitor applications. J. Nanosci. Nanotechnol. 14, 1134–1144 (2014).

    Article  CAS  Google Scholar 

  14. Liu, P. et al. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J, 368, 285–298 (2019).

    Article  CAS  Google Scholar 

  15. Zheng, B., Hermet, P. & Henrard L. Scanning tunneling microscopy simulations of nitrogen- and boron-doped graphene and single-walled carbon nanotubes. ACS nano. 4, 4165–4173 (2010).

    Article  CAS  Google Scholar 

  16. Guillaume, S. O., Zheng, B., Charlier, J. C. & Henrard, L. Electronic properties and STM images of doped bilayer graphene. Phys. Rev. B, 85, 035444 (2012).

    Google Scholar 

  17. Wang, Y., Shao, Y., Matson, D. W., Li, J.& Lin, Y. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS nano. 4, 1790–1798 (2010).

    Article  CAS  Google Scholar 

  18. Lei, H., Tu, J., Tian, D. & Jiao S. A nitrogen-doped graphene cathode for high-capacitance aluminum-ion hybrid supercapacitors. New J. Chem. 42, 15684–15691 (2018).

    Article  CAS  Google Scholar 

  19. Yang, D. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon. 47, 145–152 (2009).

    Article  CAS  Google Scholar 

  20. Lin, Z., Waller, G. H., Liu, Y., Liu, M. & Wong, C. 3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano Energy 2, 241–248 (2013).

    Article  CAS  Google Scholar 

  21. Balaji, S. S., Elavarasan, A. & Sathish, M. High performance supercapacitor using N-doped graphene prepared via supercritical fluid processing with an oxime nitrogen source. Electrochim. Acta. 200, 37–45 (2016).

    Article  CAS  Google Scholar 

  22. Lee, K. H., Oh, J., Son, J. G., Kim, H. & Lee, S. S. Nitrogen-doped graphene nanosheets from bulk graphite using microwave irradiation. ACS Appl. Mater. Interfaces 6, 6361–6368 (2014).

    Article  CAS  Google Scholar 

  23. Li, X. et al. Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem. Commun. 13, 822–825 (2011).

    Article  CAS  Google Scholar 

  24. Deng, D. et al. Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 23, 1188–1193 (2011).

    Article  CAS  Google Scholar 

  25. Mou, Z., Chen, X., Du, Y. & Wang, X. Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea. Appl. Surf. Sci. 258, 1704–1710 (2011).

    Article  CAS  Google Scholar 

  26. Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nanosci. Technol. 320–329 (2010).

    Google Scholar 

  27. Conway, B. E. Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J. Electrochem. Soc. 138, 1539 (1991).

    Article  CAS  Google Scholar 

  28. An, K. H, et al. Electrochemical properties of high‐power supercapacitors using single-walled carbon nanotube electrodes. Adv. Funct. Mater. 11, 387–392 (2001).

    Article  CAS  Google Scholar 

  29. Wang, Y.et al. Preventing graphene sheets from restacking for high-capacitance performance. J. Phys. Chem. C. 115, 23192–23197 (2011).

    Article  CAS  Google Scholar 

  30. Dreyer, D. R., Murali, S., Zhu, Y., Ruoff, R. S. & Bielawski, C. W. Reduction of graphite oxide using alcohols. J. Mater. Chem. 21, 3443–3447 (2011).

    Article  CAS  Google Scholar 

  31. Vivekchand, S., Rout, C. S., Subrahmanyam, K., Govindaraj, A. & Rao, C. Graphene-based electrochemical supercapacitors. J Chem Sci. 120, 9–13 (2008).

    CAS  Google Scholar 

  32. Jeong, H. M. et al. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11, 2472–2477 (2011).

    Article  CAS  Google Scholar 

  33. Zhang, Y., Cao, B., Zhang, B., Qi, X. & Pan, C. The production of nitrogen-doped graphene from mixed amine plus ethanol flames. Thin Solid Films 520, 6850–6855 (2012).

    Article  CAS  Google Scholar 

  34. You, B., Wang, L., Yao, L. & Yang, J. Three dimensional N-doped graphene-CNT networks for supercapacitor. Chem. Comm. 49, 5016–5018 (2013).

    Article  CAS  Google Scholar 

  35. Elessawy, N. A., El Nady, J., Wazeer, W. & Kashyout, A. Development of high-performance supercapacitor based on a novel controllable green synthesis for 3D nitrogen doped graphene. Sci. Rep. 9, 1–10 (2019).

    Article  CAS  Google Scholar 

  36. Ikram, R. et al. Recent advancements of n-doped graphene for rechargeable batteries: A review. Crystals, 10, 1080 (2020).

    Article  CAS  Google Scholar 

  37. Xiong, D. et al. Superior cathode performance of nitrogen-doped graphene frameworks for lithium ion batteries. ACS Appl. Mater. Interfaces. 9, 10643–10651 (2017).

    Article  CAS  Google Scholar 

  38. Pan, D. et al. Li storage properties of disordered graphene nanosheets. Chem. Mater. 21, 3136–3142 (2009).

    Article  CAS  Google Scholar 

  39. Wu, Z. S., Ren, W., Xu, L., Li, F. & Cheng, H. M. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS nano. 5, 5463–5471 (2011).

    Article  CAS  Google Scholar 

  40. Palnitkar, U. et al. Remarkably low turn-on field emission in undoped, nitrogen-doped, and boron-doped graphene. Appl. Phys. Lett. 97, 063102 (2010).

    Google Scholar 

  41. Sui, Z. Y. et al. A highly nitrogen-doped porous graphene-an anode material for lithium ion batteries. J. Mater. Chem. A. 3, 18229–18237 (2015).

    Article  CAS  Google Scholar 

  42. Yang, J. et al. Fabrication of nitrogen-doped porous graphene hybrid nanosheets from metal-organic frameworks for lithium-ion batteries. Nanotechnology 31, 145402 (2020).

    Google Scholar 

  43. Avouris, P., Chen, Z. & Perebeinos, V. Carbon-based electronics. Nanosci. Technol., 174–184 (2010).

    Google Scholar 

  44. Sharma, R., Late, D., Joag, D., Govindaraj, A. & Rao, C. Field emission properties of boron and nitrogen doped carbon nanotubes. Chem. Phys. Lett. 428, 102–108 (2006).

    Article  CAS  Google Scholar 

  45. Xu. W. et al. N‐doped graphene field‐effect transistors with enhanced electron mobility and air-stability. Small, 10, 1999–2005 (2014).

    Article  CAS  Google Scholar 

  46. Tiwari, D. L. & Sivasankaran, K. Nitrogen-doped NDR behavior of double gate graphene field effect transistor. Superlattice Microst. 136, 106308 (2019).

    Google Scholar 

  47. Kashid, R. V. et al. Field emission characteristics of pristine and N-doped graphene measured by in-situ transmission electron microscopy. J. Appl. Phys. 113, 214311 (2013).

    Google Scholar 

  48. Li, M., Zhang, L., Xu, Q., Niu, J. & Xia, Z. N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations. J. Catal. 314, 66–72 (2014).

    Article  CAS  Google Scholar 

  49. Choi, C. H., Chung, M. W., Kwon, H. C., Park, S. H. & Woo, S. I. B, N-and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media. J. Mater. Chem. A. 1, 3694–3699 (2013).

    Article  CAS  Google Scholar 

  50. Rajasekar, R., Nayak, G.C., Malas, A., Das, C.K.M.D. Development of compatibilized SBR and EPR nanocomposites containing dual filler system. 35,878–885 (2012).

    Article  CAS  Google Scholar 

  51. Nayak, G.C., Rajasekar, R., Bose, S., Das, C.K.J.N.T. Effect of MWNTs and SiC-coated MWNTs on properties of PEEK/LCP blend. (2009).

    Article  CAS  Google Scholar 

  52. Nayak, G.C., Sahoo, S., Rajasekar, R., Das, C.K.C.P.A.A.S.M. Novel approach for the selective dispersion of MWCNTs in the Nylon/SAN blend system. 43(8), 1242–1251 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, H.K.M., Rathanasamy, R., Chinnasamy, M., Kaliyannan, G. (2022). Recent Progress in N-Doped Graphene: Properties and Applications. In: Sahoo, S., Tiwari, S.K., Das, A.K. (eds) Defect Engineering of Carbon Nanostructures. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-94375-2_6

Download citation

Publish with us

Policies and ethics