Skip to main content

Defected Carbon Nanotubes and Their Application

  • Chapter
  • First Online:
Defect Engineering of Carbon Nanostructures

Abstract

Some of the challenges and specific outcomes of the doped carbon nanotubes have been reviewed in detail. In particular, the doping techniques and the implementations of doped CNTs depending on the specific applications such as sensors, electronic devices, nanorobots, composites, and so on have been reported. Various synthetic approaches have been utilized to dope the novel CNT materials. Recently, the transport behavior of doped CNTs was explored by several researchers. In this chapter, the current advancement on carbon nanotubes doping has been highlighted. The recent progress of the functionalization, fluorination, and electrochemical modifications of doped CNTs have been briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruoff, R. S. & Lorents, D. C. Mechanical and thermal properties of carbon nanotubes. Carbon 33, 925–930 (1995).

    Article  CAS  Google Scholar 

  2. Kim, P., Shi, L., Majumdar, A. & McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001).

    Google Scholar 

  3. Javey, A. et al. High-κ dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 1, 241–246 (2002).

    Article  CAS  Google Scholar 

  4. Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

    Article  CAS  Google Scholar 

  5. Tans, S. J., Verschueren, A.R.M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

    Article  CAS  Google Scholar 

  6. Rajasekar, R., Nayak, G.C., Malas, A., Das, C.K.M.D. Development of compatibilized SBR and EPR nanocomposites containing dual filler system. 35, 878–885 (2012).

    Article  CAS  Google Scholar 

  7. Nayak, G.C., Rajasekar, R., Bose, S., Das, C.K.J.N.T. Effect of MWNTs and SiC-coated MWNTs on properties of PEEK/LCP blend. (2009).

    Article  CAS  Google Scholar 

  8. Nayak, G.C., Sahoo, S., Rajasekar, R., Das, C.K.C.P.A.A.S.M. Novel approach for the selective dispersion of MWCNTs in the Nylon/SAN blend system. 43(8), 1242–1251 (2012).

    Article  CAS  Google Scholar 

  9. Kong, J. et al. Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000).

    Article  CAS  Google Scholar 

  10. Robinson, J. A. et al. Role of defects in single-walled carbon nanotube chemical sensors. Nano Letters 6, 8, 1747–1751 (2006).

    Article  CAS  Google Scholar 

  11. Ong, K.G., Zeng, K. & Grimes, C.A. A wireless, passive carbon nanotube-based gas sensor. IEEE Sens. J.2, 82–88 (2002).

    Google Scholar 

  12. Lin, Y., Lu, F. & Wang, J. Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents. Electroanalysis16, 145–149 (2004).

    Article  CAS  Google Scholar 

  13. Cai, D. et al. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods 2, 449–454 (2005).

    Article  CAS  Google Scholar 

  14. Singh, R. et al. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors J. Am. Chem. Soc. 127, 4388–4396 (2005).

    Article  CAS  Google Scholar 

  15. Park, K.H., Chhowalla, M., Iqbal, Z. & Sesti, F. Single-walled carbon nanotubes are a new class of ion channel blockers. J. Biol. Chem. 278, 50212–50216 (2003).

    Article  CAS  Google Scholar 

  16. Glerup, M., Krstic, V. Ewels, C. Holzinger, M. &Van Lier. G. Doping of Carbon Nanotubes. In Eds., Doped Nanomaterials and Nanodevices – Volume 3 by Wei Chen (2007).

    Google Scholar 

  17. Chen. Y. et al. Chemical attachment of organic functional groups to single-walled carbon nanotube material. J. Mater. Res. 13, 2423–2431 (1998).

    Article  CAS  Google Scholar 

  18. Bahr, J. L. & Tour, J. M. Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 12, 1952–1958 (2002).

    Article  CAS  Google Scholar 

  19. Hirsch. A. Functionalization of single-walled carbon nanotubes. Angew. Chemie - Int. Ed. 41, 1853–1859 (2002).

    Article  CAS  Google Scholar 

  20. Banerjee, S., Kahn, M. G. C. & Wong, S. S. Rational chemical strategies for carbon nanotube functionalization. Chem. Eur. J. 9, 1898–1908 (2003).

    Article  CAS  Google Scholar 

  21. Dyke, C. A. & Tour. J. M. Covalent functionalization of single-walled carbon nanotubes for materials applications. J. Phys. Chem. A 108, 11151–11159 (2004).

    Google Scholar 

  22. Banerjee, S., Hemraj-Benny, T. & Wong. S. S. Covalent surface chemistry of single-walled carbon nanotubes. Adv. Mater. 17, 17–29 (2005).

    Google Scholar 

  23. Balasubramanian, K. & Burghard, M. Chemicallyfunctionalized carbon nanotubes1. Small2, 180–192 (2005).

    Article  Google Scholar 

  24. Hamon, M. A. et al. Effect of rehybridization on the electronic structure of single-walled carbon nanotubes. J. Am. Chem.Soc., 123, 11292–11293 (2001).

    Article  CAS  Google Scholar 

  25. Haddon, R. C. Chemistry of the fullerenes: The manifestation of strain in a class of continuous aromatic molecules. Science 261, 1545–1550 (1993).

    Article  CAS  Google Scholar 

  26. Haddon, R. C. Measure of nonplanarity in conjugated organic molecules: which structurally characterized molecule displays the highest degree of pyramidalization? J. Am. Chem. Soc. 112, 3385–3389 (1990).

    Article  CAS  Google Scholar 

  27. Rabideau, P. W. & Sygula, A. Buckybowls: Polynuclear aromatic hydrocarbons related to the buckminsterfullerene surface. Acc. Chem. Res. 29, 235–242 (1996).

    Article  CAS  Google Scholar 

  28. Scott, L. T., Bratcher, M. S. & Hagen. S. Synthesis and characterization of a c36h12 fullerene subunit. J. Am. Chem. Soc. 118, 8743–8744 (1996).

    Google Scholar 

  29. Haddon, R. C. & Raghavachari, K. Electronic structure of the fulleroids: Homoconjugation in bridged C60 derivatives. Tetrahedron 52, 5207–5220 (1996).

    Article  CAS  Google Scholar 

  30. Weedon, B. R.,Haddon, R. C., Spielmann, H. P. & Meier, M. S. Fulleroid addition regiochemistry is driven by π-orbital misalignment. J. Am. Chem. Soc. 121, 335–340 (1999).

    Article  CAS  Google Scholar 

  31. Bodwell, G.J. et al. 1,7-Dioxa[7](2,7)pyrenophane: The pyrene moiety is more bent than that of C70. Chem. Eur. J. 5, 1823–1827 (1999).

    Article  CAS  Google Scholar 

  32. Srivastava, D. et al. Predictions of enhanced chemical reactivity at regions of local conformational strain on carbon nanotubes: Kinky chemistry. J. Phys. Chem. B 103, 4330–4337 (1999).

    Article  CAS  Google Scholar 

  33. Chen, Z. Thiel, W. & Hirsch, A. Reactivity of the convex and concave surfaces of single-walled carbon nanotubes (SWCNTs) towards addition reactions: dependence on the carbon-atom pyramidalization. Chem. Phys. Chem. 4, 93–97 (2003).

    Article  CAS  Google Scholar 

  34. Chen, Z. et al. Side-wall opening of single-walled carbon nanotubes (swcnts) by chemical modification: A critical theoretical study.Angew. Chemie - Int. Ed. 116, 1578–1580 (2004).

    Google Scholar 

  35. Holzinger, M. et al. Characterization of oxidized SWCNTs by XPS. AIP Conf. Proc. 633, 96–99 (2002).

    Article  CAS  Google Scholar 

  36. Hiura, H., Ebbesen, T.W. & Tanigaki, K. Opening and purification of carbon nanotubes in high yields. Adv. Mater.7, 275–276 (1995).

    Article  CAS  Google Scholar 

  37. Ebbesen, T.W. et al. Decoration of carbon nanotubes. Adv.Mater. 8, 155–157 (1996).

    Article  CAS  Google Scholar 

  38. Chen, J. et al. Haddon.Solution properties of single-walled carbon nanotubes. Science 282, 95–98 (1998).

    Google Scholar 

  39. Liu, J. et al. Fullerene pipes. Science 280, 1253–1256 (1998).

    Article  CAS  Google Scholar 

  40. Mawhinney, D.B. et al. Infrared spectral evidence for the etching of carbon nanotubes: ozone oxidation at 298 kJ. Am.Chem. Soc. 122, 2383–2384 (2000).

    Article  CAS  Google Scholar 

  41. Kuznetsova, A. et al. Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports. Chem. Phys. Lett. 321, 3–4, 292–296 (2000).

    Article  CAS  Google Scholar 

  42. Ajayan, P.M. et al. Opening carbon nanotubes with oxygen and implications for filling. Nature 361, 333 (1993).

    Article  CAS  Google Scholar 

  43. Holzinger, M. et al. Sidewall functionalization of carbon nanotubes. Angew. Chemie - Int. Ed. 40, 21, 4002–4005 (2001).

    Article  CAS  Google Scholar 

  44. Peng, H., Reverdy, P., Khabashesku, V. N. & Margravea, J. L. Sidewall functionalization of single-walled carbon nanotubes with organic peroxides. Chem. Commun. 3, 362–363 (2003).

    Article  Google Scholar 

  45. Chen, H.S., Kortan, A. R., Haddon, R. C. & Kopylov, N. Formation energy of alkali-metal-doped fullerite compounds A6C60. J. Phys. Chem. B 97, 3088–3090 (1993).

    Article  CAS  Google Scholar 

  46. Holzinger, M. et al. Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes. J. Am. Chem. Soc. 28, 125, 8566–8580 (2003).

    Article  Google Scholar 

  47. Georgakilas, V. et al.Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 124, 760–761 (2002).

    Article  CAS  Google Scholar 

  48. Viswanathan, G. et al. Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. J. Am. Chem. Soc. 125, 9258–9259 (2003).

    Article  CAS  Google Scholar 

  49. Blake, R. et al. A generic organometallic approach toward ultra-strong carbon nanotube polymer composites. J. Am. Chem.Soc. 126, 10226–10227 (2004).

    Article  CAS  Google Scholar 

  50. Chen, S., Shen, W., Wu, G., Chen, D. & Jiang, M. A new approach to the functionalization of single-walled carbon nanotubes with both alkyl and carboxyl groups. Chem. Phys. Lett. 402, 312–317 (2005).

    Article  CAS  Google Scholar 

  51. Graupner, R. et al. Nucleophilic−alkylation−reoxidation: A functionalization sequence for single-wall carbon nanotubes. J. Am. Chem. Soc. 128, 6683–6689 (2006).

    Article  CAS  Google Scholar 

  52. Mickelson, E.T. et al. Fluorination of single-wall carbon nanotubes. Chem.Phys. Lett., 296, 188–194 (1998).

    Article  CAS  Google Scholar 

  53. Bahr, J.L. et al. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. J. Am. Chem. Soc. 123, 6536–6542 (2001).

    Article  CAS  Google Scholar 

  54. Bahr, J.L. & Tour, J.M. Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem. Mater. 13, 3823–3824 (2001).

    Article  CAS  Google Scholar 

  55. Holzinger, M. et al. Purification and functionalisation of nitrogen‐doped single‐walled carbon nanotubes. AIP Conf. Proc. 786, 211–214 (2005).

    Article  CAS  Google Scholar 

  56. O'Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Article  Google Scholar 

  57. Dyke, C. A. & Tour, J. M. Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano Lett. 3, 1215–1218 (2003).

    Article  CAS  Google Scholar 

  58. Liang, F. et al. A convenient route to functionalized carbon nanotubes. Nano Lett. 4, 1257–1260 (2004).

    Article  CAS  Google Scholar 

  59. Chattopadhyay, J. et al. Carbon nanotube salts. Arylation of single-wall carbon nanotubes. Org. Lett. 7, 4067–4069 (2005).

    Google Scholar 

  60. Hamon, M. A. et al. Dissolution of single-walled carbon nanotubes. Adv.Mater. 11, 834–840 (1999).

    Article  CAS  Google Scholar 

  61. Chen, J. et al. Dissolution of full-length single-walled carbon nanotubes. J. Phys. Chem. B 105, 2525–2528, (2001).

    Article  CAS  Google Scholar 

  62. Haddon, R.C. & Chen. J. Solubilizing single-walled carbon nanotubes by direct reaction with amines and alkylaryl amines.US Patent 6187823 (2001)

    Google Scholar 

  63. Neises, B. & W. Steglich. Simple method for the esterification of carboxylic acids. Chem. Int. Ed. 17, 522–524, (1978).

    Article  Google Scholar 

  64. Wong, S.S.,Woolley, A. T., Joselevich, E., Cheung, C. L. & Lieber, C. M. Covalently-functionalized single-walled carbon nanotube probe tips for chemical force microscopy. J. Am. Chem. Soc. 120, 8557–8558, (1998).

    Article  CAS  Google Scholar 

  65. Holzinger, M. et al. Novel purification procedure and derivatization method of single-walled carbon nanotubes (SWNTs). AIP Conf. Proc. 544, 246–249 (2000).

    Article  CAS  Google Scholar 

  66. Desai, M. C. & Stramiello, L. M. S. Polymer bound EDC (P-EDC): A convenient reagent for formation of an amide bond. Tetrahedron Lett. 34, 7685–7688 (1993).

    Article  CAS  Google Scholar 

  67. Kohasaka, H. & Carson. D. A. Solid-Phase polymerase chain reaction. J. Clin. Lab. Anal. 8, 452–455 (1994).

    Google Scholar 

  68. Williams, K.A., Veenhuizen, P.T., Beatriz, G., Eritja, R. & Dekker, C. Carbon nanotubes with DNA recognition. Nature 420, 761, (2002).

    Article  CAS  Google Scholar 

  69. Holzinger, M. et al. [2+1] cycloaddition for cross-linking SWCNTs. Carbon 42, 941–947, (2004).

    Article  CAS  Google Scholar 

  70. Weiss, R., Reichel, S., Handke, M. & Hampel, F. Generation and trapping reactions of a formal 1:1 complex between singlet carbon and 2,2'-bipyridine. Angew. Chemie - Int. Ed. 37, 344–347 (1998).

    Article  CAS  Google Scholar 

  71. Stapfner, S., Ost, L., Hunger, D., Reichel, J., Favero, I. and Weig, E.M., 2013. Cavity-enhanced optical detection of carbon nanotube Brownian motion. Applied Physics Letters, 102(15), p.151910.

    Google Scholar 

  72. Weiss, R. & Reichel, S. Novel urea derivatives as two-step redox systems.Eur. J. Inorg. Chem. 9, 1935–1939 (2000).

    Article  Google Scholar 

  73. Calder, I. C., Spotswood, T. M. & Sasse, W.H.F. The dipyrido [1,2-e:2’,1'-e] imidazolium cation, a new aromatic ring system. Tetrahedron Lett. 65, 95–100 (1963).

    Google Scholar 

  74. Fagan, P. J. et al. Production of perfluoroalkylated nanospheres from buckminsterfullerene. Science 262, 404–407 (1993).

    Article  CAS  Google Scholar 

  75. Shaffer, M. S. P. & Koziol, K. Polystyrene grafted multi-walled carbon nanotubes. Chem. Commun. 18, 2074–2075 (2002).

    Article  Google Scholar 

  76. Ying, Y., Saini, R. K., Liang, F., Sadana, A. K., & Billups, W. E. Functionalization of carbon nanotubes by free radicals. Org. Lett. 5, 1471–147, (2003).

    Article  CAS  Google Scholar 

  77. Xia, H.,Wang, Q. & Qiu, G. Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization. Chem. Mater. 15, 3879–3886 (2003).

    Article  CAS  Google Scholar 

  78. Wooster, C.B. & Godfrey, K. L. Mechanism of the reduction of unsaturated compounds with alkali metals and water. J. Am. Chem. Soc. 59, 596–597 (1937).

    Article  CAS  Google Scholar 

  79. Birch, A. J.The reduction of organic compounds by metal-ammonia solutions. Quart. Rev. 4, 69–93 (1950).

    Article  CAS  Google Scholar 

  80. Hirsch, A. and Vostrowsky, O., 2005. Functionalization of carbon nanotubes. Functional molecular nanostructures, pp.193–237.

    Google Scholar 

  81. Petit, P., Mathis, C., Journet, C. & Bernier, P.Tuning and monitoring the electronic structure of carbon nanotubes. Chem. Phys. Lett. 305, 370–374 (1999).

    Article  CAS  Google Scholar 

  82. Mathis, C. & François, B. Experimental studies of n-doped (CH)x: D.c. electrical conductivity. Synth. Met. 9, 347–354 (1984).

    Google Scholar 

  83. Pénicaud, A. Poulin, P., Derré, A., Anglaret, E. & Petit, P. Spontaneous dissolution of a single-wall carbon nanotube salt. J. Am. Chem. Soc. 127, 8–9 (2004).

    Article  Google Scholar 

  84. Maggini, M. Scorrano, G. & Prato, M. Addition of azomethine ylides to C60: synthesis, characterization, and functionalization of fullerene pyrrolidines. J. Am. Chem. Soc. 115, 9798–9799 (1993).

    Article  CAS  Google Scholar 

  85. Prato, M. & Maggini, M. Fulleropyrrolidines: A family of full-fledged fullerene derivatives. Acc. Chem. Res. 31, 519–526 (1998).

    Article  CAS  Google Scholar 

  86. Pantorotto, D. et al. Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J.Am.Chem. Soc. 125, 6160–6164 (2003).

    Article  Google Scholar 

  87. D. M. Guldi et al. Single-Wall Carbon Nanotube–Ferrocene Nanohybrids: Observing intramolecular electron transfer in functionalized swnts. Angew. Chemie - Int. Ed. 115, 4338–4341, (2003).

    Article  Google Scholar 

  88. D. Pantarotto et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chemie - Int. Ed. 43, 5242–5246 (2004).

    Article  CAS  Google Scholar 

  89. Tagmatarchis, N. & Prato. M. Functionalization of carbon nanotubesvia 1,3-dipolar cycloadditions. J. Mater. Chem. 14, 437–439 (2004).

    Google Scholar 

  90. Delamar, M. et al. Modification of carbon fiber surfaces by electrochemical reduction of aryl diazonium salts: Application to carbon epoxy composites. Carbon 35, 801–807 (1997).

    Article  CAS  Google Scholar 

  91. Allongue, P. et al. Covalent Modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. J. Am Chem. Soc. 119, 201–207 (1997).

    Article  CAS  Google Scholar 

  92. Ortiz, B., Saby, C., Champagne, G. Y. & Bélanger, D. J. Electrochemical modification of a carbon electrode using aromatic diazonium salts. 2. Electrochemistry of 4-nitrophenyl modified glassy carbon electrodes in aqueous media. Electroanal. Chem. 455, 75–81 (1998).

    Google Scholar 

  93. Saby, C., Ortiz, B., Champagne, G. Y. & Bélanger, D.Electrochemical Modification of Glassy Carbon Electrode Using Aromatic Diazonium Salts. 1. Blocking Effect of 4-Nitrophenyl and 4-Carboxyphenyl Groups. Langmuir 13, 6805–6813 (1997).

    Google Scholar 

  94. Delamar, M. Hitmi, R. Pinson, J. & Savéant, J. M. Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts. J. Am. Chem. Soc. 114, 5883–5884 (1992).

    Article  CAS  Google Scholar 

  95. Kariuki, J. K. &McDermott. M. T. Nucleation and growth of functionalized aryl films on graphite electrodes. Langmuir 15, 6534–6540 (1999).

    Google Scholar 

  96. Kooi, S.E., Schlecht, U., Burghard, M. & Kern, K. Electrochemical modification of single carbon nanotubes.Angew. Chemie - Int. Ed.41, 1353–1355 (2002).

    Google Scholar 

  97. Glerup, M. et al. Synthesis of N-doped SWNT using the arc-discharge procedure. Chem. Phys. Lett. 387, 193–197 (2004).

    Article  CAS  Google Scholar 

  98. Nevidomskyy, A. H., Csányi, G. & Payne, M. C. Chemically active substitutional nitrogen impurity in carbon nanotubes.Phys. Rev. Lett. 91, 105502 (2003).

    Google Scholar 

  99. Hauke, F. & Hirsch, A. Mannich functionalization of C59N. J. Chem. Soc. Chem. Commun. 21, 2199–2200 (1999).

    Article  Google Scholar 

  100. Khabashesku, V. N., Billups, W. E. & Margrave, J. L. Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Acc. Chem. Res. 35, 1087–1095 (2002).

    Article  CAS  Google Scholar 

  101. Bettinger, H. F. Experimental and computational investigations of the properties of fluorinated single-walled carbon nanotubes. Chem. Phys. Chem. 4, 1283–1289 (2003).

    Article  CAS  Google Scholar 

  102. Nakajima, T., Kasamatsu, S. & Matsuo, Y. Synthesis and characterization of fluorinated carbon nanotube. Eur. J. Inorg. Chem. 33, 831–840 (1996).

    CAS  Google Scholar 

  103. Mickelson, E. T. et al. Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents. J. Phys. Chem. B 103, 4318–4322 (1999).

    Article  CAS  Google Scholar 

  104. Kudin, K. N., Bettinger, H. F. & Scuseria, G. E. Fluorinated single-wall carbon nanotubes.Phys. Rev. B Condens. Matter Mater. Phys. 63, 045413 (2001).

    Google Scholar 

  105. Boul, P. J. Reversible sidewall functionalization of buckytubes. Chem. Phys. Lett. 310, 367–372 (1999).

    Article  CAS  Google Scholar 

  106. Kelly, K. F. et al. Insight into the mechanism of sidewall functionalization of single-walled nanotubes: An STM study.Chem. Phys. Lett. 313, 445–450 (1999).

    Article  CAS  Google Scholar 

  107. Saini, R. K. et al. Covalent sidewall functionalization of single wall carbon nanotubes.J. Am. Chem. Soc. 125, 3617–3621 (2003).

    Google Scholar 

  108. Stevens, J. L. Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines. Nano Lett. 3, 331–336 (2003).

    Article  CAS  Google Scholar 

  109. Valentini, L., Puglia, D., Armentano, I. & Kenny, J. M. Sidewall functionalization of single-walled carbon nanotubes through CF4 plasma treatment and subsequent reaction with aliphatic amines.Chem. Phys. Lett. 403, 385–389 (2005).

    Article  CAS  Google Scholar 

  110. Dettlaff-Weglikowska, U. et al. Effect of fluorination on electrical properties of single walled carbon nanotubes and C60 peapods in networks. Curr. Appl. Phys.7, 42–46 (2006).

    Google Scholar 

  111. Seifert, G., Kohler, T. & Frauenheim, T. Molecular wires, solenoids, and capacitors by sidewall functionalization of carbon nanotubes. Appl. Phys. Lett. 77, 1313–1315 (2000).

    Article  CAS  Google Scholar 

  112. Hamwi, A., Gendraud, P., Gaucher, H., Bonnamy, S. & Beguin, F. Electrochemical properties of carbon nanotube fluorides in a lithium cell system.Mol. Cryst. Liq. Cryst. Sci. Technol. Sec. A: Mol. Cryst. Liq. Cryst. 310, 185–190 (1998).

    Article  CAS  Google Scholar 

  113. Mukhopadhyay, I. et al. Effect of chemical modification on electrochemical Li insertion in highly ordered multi-wall carbon nanotubes. Proceedings - Electrochemical Society 2014, 37–40 (2001).

    Google Scholar 

  114. Peng, H. et al. Fluorotubes as cathodes in lithium electrochemical cells. Nano Lett. 1, 625–629 (2001).

    Article  CAS  Google Scholar 

  115. Root, M. J. Comparison of fluorofullerenes with carbon monofluorides and fluorinated carbon single wall nanotubes: thermodynamics and electrochemistry. Nano Lett. 2, 541–543 (2002).

    Article  CAS  Google Scholar 

  116. Lee, J. Y., An, K.H., Heo, J. K. & Lee, Y. H. Supercapacitors using fluorinated singlewalled carbon nanotube. Proceedings – Electrochem. Soc. 2003–15, 366–70 (2003).

    Google Scholar 

  117. Lee, J. Y., An, K. H., Heo, J. K. & Lee, Y. H. Fabrication of supercapacitor electrodes using fluorinated single-walled carbon nanotubes. J. Phy. Chem. B 107, 8812–8815 (2003).

    Article  CAS  Google Scholar 

  118. Hayashi, T. et al. Nano Teflons: Structure and eels characterization of fluorinated carbon nanotubes and nanofibers. Nano Lett. 2, 491–496 (2002).

    Article  CAS  Google Scholar 

  119. Gupta, V. Comments on “NanoTeflon: Structure and eels characterization of fluorinated carbon nanotubes and nanofibers”. Nano Lett. 4, 999 (2004).

    Article  CAS  Google Scholar 

  120. Hayashi, T. Reply to “A comment on ‘nanoteflons: structure and eels characterization of fluorinated carbon nanotubes and nanofibers”. Nano Lett. 4, 1001–1002 (2004).

    Article  CAS  Google Scholar 

  121. Khabashesku, V. N., Margrave, J. L. & Barrera, E. V. Functionalized carbon nanotubes and nanodiamonds for engineering and biomedical applications.Diam. Relat. Mater. 14, 859–866 (2005).

    Article  CAS  Google Scholar 

  122. Owens, F. J. Raman and mechanical properties measurements of single walled carbon nanotube composites of polyisobutylene. J. Mater. Chem. 16, 505–508 (2006).

    Article  CAS  Google Scholar 

  123. Marcoux, P. R. et al. A spectroscopic study of the fluorination and defluorination reactions on single-walled carbon nanotubes. Phys. Chem. Chem. Phys. 4, 2278–2285 (2002).

    Article  CAS  Google Scholar 

  124. Khare, B. N., Wilhite, P. & Meyyappan, M. The fluorination of single wall carbon nanotubes using microwave plasma. Nanotechnology 15, 1650–1654 (2004).

    Article  CAS  Google Scholar 

  125. Felten, A., Bittencourt, C., Pireaux, J. J. Van Lier, G. & Charlier, J. C. Radio-frequency plasma functionalization of carbon nanotubes surface O2, NH3, and CF4 treatments. J. Appl. Phys. 98, 074308 (2005).

    Google Scholar 

  126. Yudanov, N. F. et al. Fluorination of arc-produced carbon material containing multiwall nanotubes.Chem. Mater. 14, 1472–1476 (2002).

    Article  CAS  Google Scholar 

  127. Okotrub, A. V. et al. Fluorination of CNx nanotubes, fullerenes, nanotubes, and carbon nanostructures. 12, 99–104 (2004).

    Google Scholar 

  128. Gevko, P. N. et al. Optical absorption and Raman spectroscopy study of the fluorinated double-wall carbon nanotubes.Fuller. Nanotub. Carbon Nanostructures 14, 233–238 (2006).

    Article  CAS  Google Scholar 

  129. Unger, E. et al. Fluorination of carbon nanotubes with xenon difluoride. Chem. Phys. Lett. 399, 280–283 (2004).

    Article  CAS  Google Scholar 

  130. An, K. H. et al. X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes. Appl. Phys. Lett. 80, 4235–4237 (2002).

    Article  CAS  Google Scholar 

  131. Lee, Y. S. et al. Surface properties of fluorinated single-walled carbon nanotubes, J. Fluor. Chem. 120, 99–104 (2003).

    Article  CAS  Google Scholar 

  132. Hamwi, A., Alvergnat, H., Bonnamy, S. & Beguin, F. Fluorination of carbon nanotubes. Carbon 35, 723–728 (1997).

    Article  CAS  Google Scholar 

  133. Bauschlicher, C. W. Hydrogen and fluorine binding to the sidewalls of a (10,0) carbon nanotube. Chem. Phys. Lett. 322, 237–241 (2000).

    Article  CAS  Google Scholar 

  134. Jaffe, R. L. Quantum chemistry study of fullerene and carbon nanotube fluorination. J. Phys. Chem. B 107, 10378–10388 (2003).

    Article  CAS  Google Scholar 

  135. Van Lier, G., Ewels, C. P., Zuliani, F., De Vita, A. & Charlier, J.-C. Theoretical analysis of fluorine addition to single-walled carbon nanotubes: Functionalization routes and addition patterns.J. Phys. Chem. B 109, 6153–6158 (2005).

    Google Scholar 

  136. Zhao, W., Song, C., Zheng, B., Liu, J. & Viswanathan, T. Thermal recovery behavior of fluorinated single-walled carbon nanotubes. J. Phys. Chem. B 106, 293–296 (2002).

    Article  CAS  Google Scholar 

  137. Shofner, M. L., Khabashesku, V. N. & Barrera, E. V. Processing and mechanical properties of fluorinated single-wall carbon nanotube-polyethylene composites. Chem. Mater. 18, 906–913 (2006).

    Article  CAS  Google Scholar 

  138. Georgakilas, V. et al. Purification of HiPCO carbon nanotubes via organic functionalization. J. Am. Chem. Soc. 124, 14318–14319 (2002).

    Article  CAS  Google Scholar 

  139. Zheng, M. et al. DNA-assisted dispersion and separation of carbon nanotubes. Nature Mater. 2, 338–342 (2003).

    Article  CAS  Google Scholar 

  140. Zheng, M. et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003).

    Article  CAS  Google Scholar 

  141. Heller, D. A. et al. Optical detection of DNA conformational poly-morphism on single-walled carbon nanotubes. Science 311, 508–511 (2006).

    Article  CAS  Google Scholar 

  142. Charlier, J. C. et al. Enhanced electron field emission in B-doped carbon nanotubes. Nano Lett. 2, 1191–1195 (2002).

    Article  CAS  Google Scholar 

  143. Golberg, D. Structure, transport and field-emission properties of compound nanotubes: CNx vs. BNCx (x < 0.1). Appl. Phys. A-Mater. 76, 499–507 (2003).

    Google Scholar 

  144. Doytcheva, M., Kaiser, M., Reyes-Reyes, M., Terrones, M. & de Jonge, N. Electron emission from individual nitrogen-doped multi-walled carbon nanotubes. Chem. Phys. Lett. 396, 126–130 (2004).

    Article  CAS  Google Scholar 

  145. Endo, M. et al. Vapor-grown carbon fibers (VGCFs) - Basic properties and their battery applications. Carbon 39, 1287–1297 (2001).

    Article  CAS  Google Scholar 

  146. Zhang, D. Y. et al. Lithium storage in polymerized carbon nitride nanobells. Appl. Phys. Lett. 79, 3500–3502 (2001).

    Article  Google Scholar 

  147. Wong, S. S., Joselevich, E., Woolley, A. T., Cheung, C. L. & Lieber, C. M. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394, 52–55 (1998).

    Article  CAS  Google Scholar 

  148. Collins, P., Bradley, K., Ishigami, M. & Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287, 1801–1804 (2000).

    Article  CAS  Google Scholar 

  149. Villalpando-Paez, F. et al. Fabrication of vapor and gas sensors using films of aligned CNx nanotubes. Chem. Phys. Lett. 386, 137–143 (2004).

    Google Scholar 

  150. Calvert, P. Nanotube composites - A recipe for strength. Nature 399, 210–211 (1999).

    Article  CAS  Google Scholar 

  151. Eitan, A. et al. Processing and thermal characterization of nitrogen doped MWNT/epoxy composites, in Proc. Tenth US-Japan Conf. Compos. Mater., 634–640 (2002).

    Google Scholar 

  152. Fragneaud, B., Masenelli-Varlot, K., Gonz’alez-Montiel, A., Terrones, M. & Cavaill'e, J. Y. Efficient coating of N-doped carbon nanotubes with polystyrene using atomic transfer radical polymerization. Chem. Phys. Lett. 419, 567–573 (2005).

    Google Scholar 

  153. Dehonor, M. et al. Nanotube brushes: Polystyrene grafted covalently on CNx nanotubes by nitroxide-mediated radical polymerization. Chem. Commun. 42, 5349–5351 (2005).

    Article  Google Scholar 

  154. Fragneaud, B., Masenelli-Varlot, K., Gonzalez-Montiel, A., Terrones, M. & Cavaill’e, J.-Y. Electrical behavior of polymer grafted nanotubes/polymer nanocomposites using N-doped carbon nanotubes. Chem. Phys. Lett. 444, 1–8 (2007).

    Google Scholar 

  155. Guldi, D. M. et al. Single‐wall carbon nanotube–ferrocene nanohybrids: observing intramolecular electron transfer in functionalized swnts. Angew. Chemie-Int. Ed. 42, 4338–4341 (2003).

    Article  Google Scholar 

  156. Jiang, K. et al. Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation. J. Mater. Chem. 14, 37–39 (2004).

    Article  CAS  Google Scholar 

  157. Jiang, K. Selective attachment of gold nanoparticies to nitrogen-doped carbon nanotubes. Nano Lett. 3, 275–277 (2003).

    Article  CAS  Google Scholar 

  158. Zamudio, A. et al. Efficient anchoring of silver nanoparticles on N-doped carbon nanotubes. Small 2, 346–350 (2005).

    Article  Google Scholar 

  159. Lepr'o, X. et al. Production and characterization of co-axial nanotube junctions and networks of CNx/CNT. Nano Lett.7, 2220–2226 (2007).

    Article  Google Scholar 

  160. Carrero-S'anchez, J. L. et al. Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Lett. 6, 1609–1616 (2006).

    Article  Google Scholar 

  161. Warheit, D. B. et al. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77, 117–125 (2004).

    Article  CAS  Google Scholar 

  162. Elias, A. L. et al. Comparative viability studies of pure carbon and nitrogen-doped multi walled carbon nanotube with amoeba cells: From amoebicidal to biocompatible structures. Small 3, 1723 (2007).

    Article  CAS  Google Scholar 

  163. Radosavljevic, M., Freitag, M.,Thadani, K.V. & Johnson, A.T. Nonvolatile molecular memory elements based on ambipolar nanotube field effect transistors. Nano Lett. 2, 761–764 (2002).

    Article  CAS  Google Scholar 

  164. Hirsch, A. & Brettreich, M. Fullerenes: chemistry and reactions. John Wiley & Sons (2006).

    Google Scholar 

  165. Ewels, C. P., Van Lier, G., Charlier, J. C., Heggie, M. I. & Briddon, P. R. Pattern formation on carbon nanotube surfaces. Phys. Rev. Lett. 96, 216103 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palaniappan, S.K., Chinnasamy, M., Rathanasamy, R., Chinnasamy, V., Sivaraj, S. (2022). Defected Carbon Nanotubes and Their Application. In: Sahoo, S., Tiwari, S.K., Das, A.K. (eds) Defect Engineering of Carbon Nanostructures. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-94375-2_5

Download citation

Publish with us

Policies and ethics