Skip to main content

Heteroatom Doping in Nanocarbon and Its Applications

  • Chapter
  • First Online:
Defect Engineering of Carbon Nanostructures

Abstract

Doped carbon nanomaterials have been applied in batteries, supercapacitors and fuel cells. The different carbon-based nanomaterials doped with heteroatoms like nitrogen, sulfur, boron, phosphorous and their mixers are used to replace platinum and other costlier materials for the application of Oxygen Reduction Reactions (ORR). In this chapter, adhering of the dopants, synthesis of heterodoped nanocarbons, nanocarbon material doping for the ORR and the mechanisms for ORR have been discussed in detail. Heteroatom-doped 3-dimensional carbon nanotube ORR and compound heteroatom co-doped 3-dimensional carbon nanotubes are also reviewed extensively. Additionally, different fullerenes, namely boron–nitrogen–carbon, boron–nitrogen and possible point defects that occurred in the corner of the crystallite graphite are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, M.S., et al., Sorting carbon nanotubes by electronic structure using density differentiation. Nature nanotechnology, 2006. 1(1): p. 60–65.

    Google Scholar 

  2. Miyata, Y., et al., Diameter analysis of rebundled single-wall carbon nanotubes using X-ray diffraction: verification of chirality assignment based on optical spectra. The Journal of Physical Chemistry C, 2008. 112(41): p. 15997–16001.

    Google Scholar 

  3. Krupke, R., et al., Separation of metallic from semiconducting single-walled carbon nanotubes. Science, 2003. 301(5631): p. 344–347.

    Google Scholar 

  4. Krupke, R., et al., Separation of metallic from semiconducting single-walled carbon nanotubes. Science, 2003. 301(5631): p. 344–347.

    Google Scholar 

  5. Ayala, P., et al., The physical and chemical properties of heteronanotubes. Reviews of modern physics, 2010. 82(2): p. 1843.

    Google Scholar 

  6. Yi, J.-Y. and J. Bernholc, Atomic structure and doping of microtubules. Physical Review B, 1993. 47(3): p. 1708.

    Google Scholar 

  7. Ewels, C. and M. Glerup, Nitrogen doping in carbon nanotubes. Journal of nanoscience and nanotechnology, 2005. 5(9): p. 1345–1363.

    Google Scholar 

  8. Ayala, P., et al., The doping of carbon nanotubes with nitrogen and their potential applications. Carbon, 2010. 48(3): p. 575–586.

    Google Scholar 

  9. Cruz-Silva, E., et al., Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus− nitrogen doped multiwalled carbon nanotubes. ACS nano, 2008. 2(3): p. 441–448.

    Google Scholar 

  10. Cruz-Silva, E., et al., Electronic transport and mechanical properties of phosphorus-and phosphorus− nitrogen-doped carbon nanotubes. ACS nano, 2009. 3(7): p. 1913–1921.

    Google Scholar 

  11. Some, S., et al., Highly air‐stable phosphorus‐doped n‐type graphene field‐effect transistors. Advanced materials, 2012. 24(40): p. 5481–5486.

    Google Scholar 

  12. Zheng, B., P. Hermet, and L. Henrard, Scanning tunneling microscopy simulations of nitrogen-and boron-doped graphene and single-walled carbon nanotubes. ACS nano, 2010. 4(7): p. 4165–4173.

    Google Scholar 

  13. Czerw, R., et al., Identification of electron donor states in N-doped carbon nanotubes. Nano Letters, 2001. 1(9): p. 457–460.

    Google Scholar 

  14. Golberg, D., et al., MoO3-promoted synthesis of multi-walled BN nanotubes from C nanotube templates. Chemical Physics Letters, 2000. 323(1–2): p. 185–191.

    Google Scholar 

  15. Carroll, D., et al., Effects of nanodomain formation on the electronic structure of doped carbon nanotubes. Physical Review Letters, 1998. 81(11): p. 2332.

    Google Scholar 

  16. Quandt, A., et al., Boron doped graphene nanostructures. physica status solidi (b), 2008. 245(10): p. 2077–2081.

    Google Scholar 

  17. Borowiak-Palen, E., et al., Efficient production of B-substituted single-wall carbon nanotubes. Chemical physics letters, 2003. 378(5–6): p. 516–520.

    Google Scholar 

  18. Terrones, H., et al., The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Reports on Progress in Physics, 2012. 75(6): p. 062501.

    Google Scholar 

  19. Chen, T., et al., Semiconductor to metal transition by tuning the location of N 2 AA in armchair graphene nanoribbons. Journal of Applied Physics, 2014. 115(5): p. 053707.

    Google Scholar 

  20. Stephan, O., et al., Doping graphitic and carbon nanotube structures with boron and nitrogen. Science, 1994. 266(5191): p. 1683–1685.

    Google Scholar 

  21. Yudasaka, M., et al., Nitrogen-containing carbon nanotube growth from Ni phthalocyanine by chemical vapor deposition. Carbon, 1997. 35(2): p. 195–201.

    Google Scholar 

  22. Koziol, K., B.O. Boskovic, and N. Yahya, Synthesis of carbon nanostructures by CVD method, in Carbon and Oxide Nanostructures. 2010, Springer. p. 23–49.

    Google Scholar 

  23. Terrones, M., et al., Efficient route to large arrays of CN x nanofibers by pyrolysis of ferrocene/melamine mixtures. Applied Physics Letters, 1999. 75(25): p. 3932–3934.

    Google Scholar 

  24. Lin, H., et al., Combined STM/STS, TEM/EELS investigation of CNx‐SWNTs. physica status solidi (b), 2008. 245(10): p. 1986–1989.

    Google Scholar 

  25. Min, Y.-S., et al., Growth and characterization of nitrogen-doped single-walled carbon nanotubes by water-plasma chemical vapour deposition. Nanotechnology, 2007. 18(28): p. 285601.

    Google Scholar 

  26. Villalpando-Paez, F., et al., Synthesis and characterization of long strands of nitrogen-doped single-walled carbon nanotubes. Chemical Physics Letters, 2006. 424(4–6): p. 345–352.

    Google Scholar 

  27. Ayala, P., et al., Chemical vapor deposition of functionalized single‐walled carbon nanotubes with defined nitrogen doping. physica status solidi (b), 2007. 244(11): p. 4051–4055.

    Google Scholar 

  28. Ayala, P., et al., Influence of the catalyst hydrogen pretreatment on the growth of vertically aligned nitrogen-doped carbon nanotubes. Chemistry of Materials, 2007. 19(25): p. 6131–6137.

    Google Scholar 

  29. Ayala, P., et al., Tailoring N-doped single and double wall carbon nanotubes from a nondiluted carbon/nitrogen feedstock. The Journal of Physical Chemistry C, 2007. 111(7): p. 2879–2884.

    Google Scholar 

  30. Elias, A., et al., Spectroscopic characterization of N-doped single-walled carbon nanotube strands: An x-ray photoelectron spectroscopy and Raman study. Journal of nanoscience and nanotechnology, 2010. 10(6): p. 3959–3964

    Google Scholar 

  31. Ibrahim, E., et al., Synthesis, characterization, and electrical properties of nitrogen-doped single-walled carbon nanotubes with different nitrogen content. Diamond and related materials, 2010. 19(10): p. 1199–1206.

    Google Scholar 

  32. Liu, Y., et al., Nitrogen‐Doped Single‐Walled Carbon Nanotubes Grown on Substrates: Evidence for Framework Doping and Their Enhanced Properties. Advanced Functional Materials, 2011. 21(5): p. 986–992.

    Google Scholar 

  33. Susi, T., et al., High quality SWCNT synthesis in the presence of NH3 using a vertical flow aerosol reactor. physica status solidi (b), 2009. 246(11‐12): p. 2507–2510.

    Google Scholar 

  34. Pint, C.L., et al., Supergrowth of nitrogen-doped single-walled carbon nanotube arrays: active species, dopant characterization, and doped/undopedheterojunctions. ACS nano, 2011. 5(9): p. 6925–6934

    Google Scholar 

  35. Koós, A.A., et al., N-SWCNTs production by aerosol-assisted CVD method. Chemical Physics Letters, 2012. 538: p. 108–111.

    Google Scholar 

  36. Gai, P.L., et al., Structural systematics in boron-doped single wall carbon nanotubes. Journal of Materials Chemistry, 2004. 14(4): p. 669–675.

    Google Scholar 

  37. Terrones, M., et al., The role of boron nitride in graphite plasma arcs. Fullerene science and technology, 1998. 6(5): p. 787–800.

    Google Scholar 

  38. Charlier, J.-C., et al., Enhanced electron field emission in B-doped carbon nanotubes. Nano Letters, 2002. 2(11): p. 1191–1195.

    Google Scholar 

  39. Glerup, M., et al., Synthesis of N-doped SWNT using the arc-discharge procedure. Chemical Physics Letters, 2004. 387(1–3): p. 193–197.

    Google Scholar 

  40. Panchakarla, L., et al., Synthesis, structure, and properties of boron‐and nitrogen‐doped graphene. Advanced Materials, 2009. 21(46): p. 4726–4730.

    Google Scholar 

  41. Wei, D., et al., Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano letters, 2009. 9(5): p. 1752–1758.

    Google Scholar 

  42. Wang, H., et al., Synthesis of boron‐doped graphene monolayers using the sole solid feedstock by chemical vapor deposition. small, 2013. 9(8): p. 1316–1320.

    Google Scholar 

  43. Ayala, P., et al., A one step approach to B-doped single-walled carbon nanotubes. Journal of Materials Chemistry, 2008. 18(46): p. 5676–5681.

    Google Scholar 

  44. Golberg, D., et al., Large-scale synthesis and HRTEM analysis of single-walled B-and N-doped carbon nanotube bundles. Carbon, 2000. 38(14): p. 2017–2027.

    Google Scholar 

  45. Sheng, Z.-H., et al., Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS nano, 2011. 5(6): p. 4350–4358.

    Google Scholar 

  46. Lin, H., et al., Many-body effects in electronic bandgaps of carbon nanotubes measured by scanning tunnelling spectroscopy. Nature materials, 2010. 9(3): p. 235–238.

    Google Scholar 

  47. Deng, D., et al., Toward N-doped graphene via solvothermal synthesis. Chemistry of Materials, 2011. 23(5): p. 1188–1193.

    Google Scholar 

  48. Cao, C., et al., Synthesis of carbon nitride nanotubes via a catalytic-assembly solvothermal route. Chemistry of materials, 2004. 16(25): p. 5213–5215.

    Google Scholar 

  49. Morant, C., et al., XPS characterization of nitrogen‐doped carbon nanotubes. physica status solidi (a), 2006. 203(6): p. 1069–1075.

    Google Scholar 

  50. Xu, F., et al., Nitrogen ion implantation in single wall carbon nanotubes. Surface science, 2007. 601(13): p. 2819–2822.

    Google Scholar 

  51. Zhang, J. and L. Dai, Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction. ACS Catalysis, 2015. 5(12): p. 7244–7253.

    Google Scholar 

  52. Yang, Z., et al., Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction. Journal of Power Sources, 2013. 236: p. 238–249.

    Google Scholar 

  53. Liu, J., et al., Recent advances in heteroatom-doped metal-free electrocatalysts for highly efficient oxygen reduction reaction. Electrocatalysis, 2015. 6(2): p. 132–147.

    Google Scholar 

  54. Ma, R., et al., Recent advances in heteroatom-doped graphene materials as efficient electrocatalysts towards the oxygen reduction reaction. Nano Adv, 2016. 1: p. 50–61.

    Google Scholar 

  55. Cheng, F. and J. Chen, Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chemical Society Reviews, 2012. 41(6): p. 2172–2192.

    Google Scholar 

  56. Suntivich, J., et al., Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nature chemistry, 2011. 3(7): p. 546–550.

    Google Scholar 

  57. Zhang, L. and Z. Xia, Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. The Journal of Physical Chemistry C, 2011. 115(22): p. 11170–11176.

    Google Scholar 

  58. Liew, K.B., et al., Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: A review. international journal of hydrogen energy, 2014. 39(10): p. 4870–4883.

    Google Scholar 

  59. Gu, W., et al., Recent Advancements in Transition Metal‐Nitrogen‐Carbon Catalysts for Oxygen Reduction Reaction. Electroanalysis, 2018. 30(7): p. 1217–1228.

    Google Scholar 

  60. Stacy, J., et al., The recent progress and future of oxygen reduction reaction catalysis: A review. Renewable and Sustainable Energy Reviews, 2017. 69: p. 401–414.

    Google Scholar 

  61. Wang, Y.C., et al., S‐doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density. AngewandteChemie, 2015. 127(34): p. 10045–10048.

    Google Scholar 

  62. Shui, J., et al., N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Science advances, 2015. 1(1): p. e1400129.

    Google Scholar 

  63. He, W., et al., Structural effects of a carbon matrix in non-precious metal O 2-reduction electrocatalysts. Chemical Society Reviews, 2016. 45(9): p. 2396–2409.

    Google Scholar 

  64. Liu, X. and L. Dai, Carbon-based metal-free catalysts. Nature Reviews Materials, 2016. 1(11): p. 1–12.

    Google Scholar 

  65. Xiong, D., et al., Controllable oxygenic functional groups of metal-free cathodes for high performance lithium ion batteries. Journal of Materials Chemistry A, 2015. 3(21): p. 11376–11386.

    Google Scholar 

  66. Xiong, D., et al., Scalable synthesis of functionalized graphene as cathodes in Li-ion electrochemical energy storage devices. Applied Energy, 2016. 175: p. 512–521.

    Google Scholar 

  67. Li, C., et al., Three dimensional graphene networks for supercapacitor electrode materials. New Carbon Materials, 2015. 30(3): p. 193–206.

    Google Scholar 

  68. Zhou, M., H.-L. Wang, and S. Guo, Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chemical Society Reviews, 2016. 45(5): p. 1273–1307.

    Google Scholar 

  69. Tu, Y., D. Deng, and X. Bao, Nanocarbons and their hybrids as catalysts for non-aqueous lithium-oxygen batteries. Journal of energy chemistry, 2016. 25(6): p. 957–966.

    Google Scholar 

  70. Lin, Z., et al., Carbon nanotube sponges, aerogels, and hierarchical composites: Synthesis, properties, and energy applications. Advanced Energy Materials, 2016. 6(17): p. 1600554.

    Google Scholar 

  71. Daems, N., et al., Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2014. 2(12): p. 4085–4110.

    Google Scholar 

  72. Zheng, Y., et al., Nanostructured metal‐free electrochemical catalysts for highly efficient oxygen reduction. Small, 2012. 8(23): p. 3550–3566.

    Google Scholar 

  73. Du, R., et al., Nitrogen‐Doped Carbon Nanotube Aerogels for High‐Performance ORR Catalysts. Small, 2015. 11(32): p. 3903–3908.

    Google Scholar 

  74. Ito, Y., et al., Bicontinuousnanoporous N‐doped graphene for the oxygen reduction reaction. Advanced Materials, 2014. 26(24): p. 4145–4150.

    Google Scholar 

  75. Tian, G.L., et al., Nitrogen‐doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Small, 2014. 10(11): p. 2251–2259.

    Google Scholar 

  76. Li, J.C., P.X. Hou, and C. Liu, Heteroatom‐Doped Carbon Nanotube and Graphene‐Based Electrocatalysts for Oxygen Reduction Reaction. Small, 2017. 13(45): p. 1702002.

    Google Scholar 

  77. Su, X.-L., et al., Three-dimensional porous activated carbon derived from loofah sponge biomass for supercapacitor applications. Applied Surface Science, 2018. 436: p. 327–336.

    Google Scholar 

  78. Avouris, P. and C. Dimitrakopoulos, Graphene: synthesis and applications. Materials today, 2012. 15(3): p. 86–97.

    Google Scholar 

  79. Xiao, X., et al., Freestanding mesoporous VN/CNT hybrid electrodes for flexible all‐solid‐state supercapacitors. Advanced Materials, 2013. 25(36): p. 5091–5097.

    Google Scholar 

  80. Yang, L., et al., Boron‐doped carbon nanotubes as metal‐free electrocatalysts for the oxygen reduction reaction. AngewandteChemie International Edition, 2011. 50(31): p. 7132–7135.

    Google Scholar 

  81. Yu, D., Y. Xue, and L. Dai, Vertically aligned carbon nanotube arrays co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction. The Journal of Physical Chemistry Letters, 2012. 3(19): p. 2863–2870.

    Google Scholar 

  82. Zhu, J., et al., One-pot synthesis of a nitrogen and phosphorus-dual-doped carbon nanotube array as a highly effective electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2014. 2(37): p. 15448–15453.

    Google Scholar 

  83. Rajasekar, R., Nayak, G.C., Malas, A., Das, C.K.M.D., Development of compatibilized SBR and EPR nanocomposites containing dual filler system. 2012. 35, pp.878–885.

    Article  CAS  Google Scholar 

  84. Nayak, G.C., Rajasekar, R., Bose, S., Das, C.K.J.N.T., Effect of MWNTs and SiC-coated MWNTs on properties of PEEK/LCP blend. 2009.

    Article  CAS  Google Scholar 

  85. Nayak, G.C., Sahoo, S., Rajasekar, R., Das, C.K.C.P.A.A.S.M., Novel approach for the selective dispersion of MWCNTs in the Nylon/SAN blend system, 2012. 43(8): p. 1242–1251.

    Article  CAS  Google Scholar 

  86. Li, X. and L. Zhi, Graphene hybridization for energy storage applications. Chemical Society Reviews, 2018. 47(9): p. 3189–3216.

    Google Scholar 

  87. Rey-Raap, N., et al., Influence of multiwalled carbon nanotubes as additives in biomass-derived carbons for supercapacitor applications. ACS applied materials & interfaces, 2019. 11(6): p. 6066–6077.

    Google Scholar 

  88. Shi, W., et al., High-performance capacitive deionization via manganese oxide-coated, vertically aligned carbon nanotubes. Environmental Science & Technology Letters, 2018. 5(11): p. 692–700.

    Google Scholar 

  89. Yan, P., et al., Ultrahigh-power supercapacitors based on highly conductive graphenenanosheet/nanometer-sized carbide-derived carbon frameworks. Nanotechnology, 2018. 29(25): p. 255403.

    Google Scholar 

  90. Vijayakumar, M., et al., Activated carbon fibres as high performance supercapacitor electrodes with commercial level mass loading. Carbon, 2018. 140: p. 465–476.

    Google Scholar 

  91. Sharma, K., A. Arora, and S.K. Tripathi, Review of supercapacitors: Materials and devices. Journal of Energy Storage, 2019. 21: p. 801–825.

    Google Scholar 

  92. Zhao, X., et al., Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: a review. Chemical Engineering Journal, 2019. 364: p. 226–243.

    Google Scholar 

  93. Jayalakshmi, M. and K. Balasubramanian, Simple capacitors to supercapacitors-an overview. Int. J. Electrochem. Sci, 2008. 3(11): p. 1196–1217.

    Google Scholar 

  94. Yu, D., et al., KOH activation of wax gourd-derived carbon materials with high porosity and heteroatom content for aqueous or all-solid-state supercapacitors. Journal of colloid and interface science, 2019. 537: p. 569–578.

    Google Scholar 

  95. Wang, J.-N., et al., RIPK1 inhibitor Cpd-71 attenuates renal dysfunction in cisplatin-treated mice via attenuating necroptosis, inflammation and oxidative stress. Clinical Science, 2019. 133(14): p. 1609–1627.

    Google Scholar 

  96. Zhang, L., et al., Ion-matching porous carbons with ultra-high surface area and superior energy storage performance for supercapacitors. Journal of Materials Chemistry A, 2019. 7(15): p. 9163–9172.

    Google Scholar 

  97. Wang, N., et al., Incomplete phase separation strategy to synthesize P/N co-doped porous carbon with interconnected structure for asymmetric supercapacitors with ultra-high power density. ElectrochimicaActa, 2019. 298: p. 717–725.

    Google Scholar 

  98. Jin, Z.Y., et al., Ionic Liquid‐Assisted Synthesis of Microporous Carbon Nanosheets for Use in High Rate and Long Cycle Life Supercapacitors. Advanced Materials, 2014. 26(22): p. 3700–3705.

    Google Scholar 

  99. Huang, T., et al., Tri-high designed graphene electrodes for long cycle-life supercapacitors with high mass loading. Energy Storage Materials, 2019. 17: p. 349–357.

    Google Scholar 

  100. Sobhani-Nasab, A., et al., Sonochemical synthesis of terbium tungstate for developing high power supercapacitors with enhanced energy densities. Ultrasonicssonochemistry, 2018. 45: p. 189–196.

    Google Scholar 

  101. Liu, X., et al., Ni-doped cobalt-cobalt nitride heterostructure arrays for high-power supercapacitors. ACS Energy Letters, 2018. 3(10): p. 2462–2469.

    Google Scholar 

  102. Wang, G., et al., Beyond Activated Carbon: Graphite‐Cathode‐Derived Li‐Ion Pseudocapacitors with High Energy and High Power Densities. Advanced Materials, 2019. 31(14): p. 1807712.

    Google Scholar 

  103. Jiang, Y. and J. Liu, Definitions of pseudocapacitive materials: a brief review. energy& environmental materials, 2019. 2(1): p. 30–37.

    Google Scholar 

  104. Wang, Y., et al., Electrochemical double layer capacitors containing carbon black additives for improved capacitance and cycle life. Carbon, 2018. 133: p. 1–5.

    Google Scholar 

  105. Wang, D., et al., High performance electrode materials for electric double-layer capacitors based on biomass-derived activated carbons. ElectrochimicaActa, 2015. 173: p. 377–384.

    Google Scholar 

  106. Prataap, R.V., et al., Effect of electrodeposition modes on ruthenium oxide electrodes for supercapacitors. Current Applied Physics, 2018. 18(10): p. 1143–1148.

    Google Scholar 

  107. Zeng, Y., et al., Iron‐based supercapacitor electrodes: advances and challenges. Advanced Energy Materials, 2016. 6(24): p. 1601053.

    Google Scholar 

  108. Zheng, Y.-z., H.-y. Ding, and M.-l. Zhang, Preparation and electrochemical properties of nickel oxide as a supercapacitor electrode material.Materials Research Bulletin, 2009. 44(2): p. 403–407.

    Google Scholar 

  109. Lu, M., Supercapacitors: materials, systems, and applications. 2013: John Wiley & Sons.

    Google Scholar 

  110. Naoi, K., et al., Second generation ‘nanohybridsupercapacitor’: evolution of capacitive energy storage devices. Energy & Environmental Science, 2012. 5(11): p. 9363–9373.

    Google Scholar 

  111. Olabi, A. and M. Abdelkareem, Energy Storage Systems Towards 2050. 2020, Elsevier.

    Google Scholar 

  112. Abbas, Q., M. Mirzaeian, and A.A. Ogwu, Electrochemical performance of controlled porosity resorcinol/formaldehyde based carbons as electrode materials for supercapacitor applications. International Journal of Hydrogen Energy, 2017. 42(40): p. 25588–25597.

    Google Scholar 

  113. Abbas, Q., et al., Effect of physical activation/surface functional groups on wettability and electrochemical performance of carbon/activated carbon aerogels based electrode materials for electrochemical capacitors. International Journal of Hydrogen Energy, 2020. 45(25): p. 13586–13595.

    Google Scholar 

  114. Zhou, J., et al., Nitrogen-doped highly dense but porous carbon microspheres with ultrahigh volumetric capacitance and rate capability for supercapacitors. Journal of Materials Chemistry A, 2019. 7(2): p. 476–485.

    Google Scholar 

  115. Wang, D., et al., In situ double-template fabrication of boron-doped 3D hierarchical porous carbon network as anode materials for Li-and Na-ion batteries. Applied Surface Science, 2019. 464: p. 422–428.

    Google Scholar 

  116. Patiño, J., et al., Phosphorus-doped carbon-carbon nanotube hierarchical monoliths as true three-dimensional electrodes in supercapacitor cells. Journal of Materials Chemistry A, 2016. 4(4): p. 1251–1263.

    Google Scholar 

  117. Wu, Z.-S., et al., Bottom-up fabrication of sulfur-doped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance micro-supercapacitors. Journal of the American Chemical Society, 2017. 139(12): p. 4506–4512.

    Google Scholar 

  118. Hershfinkel M, Gheber L, Volterra V, Hutchison J, Margulis L, Tenne R (1994) Nested polyhedra of MX2 (M= W, Mo; X= S, Se) probed by high-resolution electron microscopy and scanning tunneling microscopy. Journal of the American Chemical Society 116 (5):1914–1917.

    Google Scholar 

  119. Tenne R (1995) Doped and heteroatom‐containing fullerene‐like structures and nanotubes. Advanced Materials 7 (12):965–995.

    Google Scholar 

  120. Margulis L, Salitra G, Tenne R, Talianker M (1993) Nested fullerene-like structures. Nature 365 (6442):113–114.

    Google Scholar 

  121. Bardo RD, Stanton CT, Jones WH (1995) Predicted Structures of Precursors B4N6H8, B4N8H8, and B4N8H6 and the B24N36 Analog of C60. Inorganic Chemistry 34 (5):1271–1272.

    Google Scholar 

  122. Pan L-L, Li J, Wang L-S (2008) Low-lying isomers of the B 9− boron cluster: The planar molecular wheel versus three-dimensional structures. The Journal of chemical physics 129 (2):024302.

    Google Scholar 

  123. Majedi S, Rauf HG, Boustanbakhsh M (2019) DFT study on sensing possibility of the pristine and Al-and Ga-embeded B12N12 nanostructures toward hydrazine and hydrogen peroxide and their analogues. Chemical Review and Letters 2 (4):176

    Google Scholar 

  124. Choi, H.J., et al., Defects, quasibound states, and quantum conductance in metallic carbon nanotubes. Physical Review Letters, 2000. 84(13): p. 2917

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raj, M.K.A., Rathanasamy, R., Palaniappan, S.K., Kaliyannan, G., Chinnasamy, M., Sivaraj, S. (2022). Heteroatom Doping in Nanocarbon and Its Applications. In: Sahoo, S., Tiwari, S.K., Das, A.K. (eds) Defect Engineering of Carbon Nanostructures. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-94375-2_3

Download citation

Publish with us

Policies and ethics