Skip to main content

Tools and Techniques for Impact Analysis

  • Chapter
  • First Online:
Handbook of Fire and the Environment

Abstract

This chapter presents quantitative tools and techniques for conducting environmental impact analysis from unwanted fire. The methods introduced can be used to assess the ability of different mitigation methods to minimize the impacts of human activities, which result in emissions to the environment (air, water, soil), including risk assessments, benefit-cost assessments (BCA) and life cycle cost assessment (LCCA), life cycle assessments (LCA) and a variety of specialized and hybrid models. This chapter considers the types of impacts and their pathways. Specific tools discussed include: Building for Environmental and Economic Sustainability (BEES), Building Industry Reporting and Design for Sustainability (BIRDS), BIRDS Neutral Environment Software Tool (BIRDS NEST), SiteWise, Building Life Cycle Cost (BLCC), Economic Decision Guide Software (EDGe$), ENVECO, the Fire-Impact Tool, and Fire-LCA. Examples are provided to demonstrate their use and applicability. Linkages between the methods and traceable standards and published best practices and guides are provided, where applicable. Environmental impacts from wildland fires are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braun E, Levin B (1987) Nylons: a review of the literature on products of combustion and toxicity. Fire Mater 11:71–88. https://doi.org/10.1002/fam.810110204

    Article  Google Scholar 

  2. Gurman JL, Baier L, Levin B (1987) Polystyrenes: a review of the literature on the products of thermal decomposition and toxicity. Fire Mater 11:109–130. https://doi.org/10.1002/fam.810110302

    Article  Google Scholar 

  3. Huggett C, Levin BC (1987) Toxicity of the pyrolysis and combustion products of poly(vinyl chlorides): a literature assessment. Fire Mater 11(3):131–142. https://doi.org/10.1002/fam.810110303

    Article  Google Scholar 

  4. Levin B (1987) A summary of the NBS literature reviews on the chemical nature and toxicity of the pyrolysis and combustion products from seven plastics: ABS, nylons, polyester, polyethylenes, PVC and rigid polyurethane foams. Fire Mater 11:143–157. https://doi.org/10.1002/fam.810110304

    Article  Google Scholar 

  5. Paabo M, Levin BC (1987) A literature review of the chemical nature and toxicity of the decomposition products of polyethylenes. Fire Mater 11(2):55–70. https://doi.org/10.1002/fam.810110203

    Article  Google Scholar 

  6. Paabo M, Levin BC (1987) A review of the literature on the gaseous products and toxicity generated from the pyrolysis and combustion of rigid polyurethane foams. Fire Mater 11(1):1–29. https://doi.org/10.1002/fam.810110102

    Article  Google Scholar 

  7. Samsonov YN, Koutsenogii KP, Makarov VI, Ivanov AV, Ivanov VA, McRae DJ, Conard SG, Baker SP, Ivanova GA (2005) Particulate emissions from fires in central Siberian Scots pine forests. Can J For Res 35(9):2207–2217. https://doi.org/10.1139/X05-199

    Article  Google Scholar 

  8. Qu JJ, Gao W, Kafatos M, Murphy RE, Salomonson VV, Li Z, Jin J-Z, Gong P, Pu R (2006) Use of satellite remote sensing data for modeling carbon emissions from fires: a perspective in North America. p 337. https://doi.org/10.1007/978-3-540-37293-6_18

  9. Wiedinmyer C, Neff JC (2007) Estimates of CO2 from fires in the United States: implications for carbon management. Carbon Balance Manag 2:10–21. https://doi.org/10.1186/1750-0680-2-10

    Article  Google Scholar 

  10. Bombelli A, Henry M, Castaldi S, Adu-Bredu S, Arneth A, Grandcourt A, Grieco E, Kutsch WL, Lehsten V, Rasile A, Reichstein M, Tansey K, Weber U, Valentini R (2009) An outlook on the sub-Saharan Africa carbon balance. Biogeosciences 10:2193. https://doaj.org/article/b8108ebcd1734e5b8cd33c9a93f8ff39

    Article  Google Scholar 

  11. Martins V, Miranda AI, Carvalho A, Schaap M, Borrego C, Sá E (2012) Impact of forest fires on particulate matter and ozone levels during the 2003, 2004 and 2005 fire seasons in Portugal. Sci Total Environ 414:53. https://doi.org/10.1016/j.scitotenv.2011.10.007

    Article  Google Scholar 

  12. Marlier ME, DeFries R, Pennington D, Nelson E, Ordway EM, Lewis J, Koplitz SN, Mickley LJ (2015) Future fire emissions associated with projected land use change in Sumatra. Glob Chang Biol 21(1):345–362. https://doi.org/10.1111/gcb.12691

    Article  Google Scholar 

  13. Preisler HK, Schweizer D, Cisneros R, Procter T, Ruminski M, Tarnay L (2015) A statistical model for determining impact of wildland fires on Particulate Matter (PM.sub.2.5) in Central California aided by satellite imagery of smoke. Environ Pollut 205:340

    Article  Google Scholar 

  14. Hao WM, Petkov A, Nordgren BL, Corley RE, Silverstein RP, Urbanski SP, Evangeliou N, Balkanski Y, Kinder BL (2016) Daily black carbon emissions from fires in northern Eurasia for 2002–2015. Geosci Model Dev 12:4461. https://doi.org/10.5194/gmd-9-4461-2016

    Article  Google Scholar 

  15. Blomqvist P, Lönnermark A, Simonson M (2004) Miljöbelastning vid bränder och andra olyckor- Utvärdering av provtagning och analyser. The environmental impact of fires and other accidents. An evaluation of samples and analyses. Räddningsverket, Borås

    Google Scholar 

  16. Blomqvist P, Rosell L, Simonson M (2004) Emissions from fires part II: simulated room fires. Fire Technol 40(1):59–73. https://doi.org/10.1023/B:FIRE.0000003316.63475.16

    Article  Google Scholar 

  17. Blomqvist P, Rosell L, Simonson M (2004) Emissions from fires part I: fire retarded and non-fire retarded TV-sets. Fire Technol 40(1):39. https://doi.org/10.1023/B:FIRE.0000003315.47815.cb

    Article  Google Scholar 

  18. Blomqvist P (2005) Emissions from fires: consequences for human safety and the environment. Report/Department of Fire Safety Engineering, Lund Institute of Technology, Lund University: 1030. Univ

    Google Scholar 

  19. Lönnermark A, Blomqvist P (2005) Emissions from Fires in Electrical and Electronics Waste. http://ri.diva-portal.org/smash/get/diva2:962333/FULLTEXT01.pdf

  20. Lönnermark A, Blomqvist P (2006) Emissions from an automobile fire. Chemosphere 62(7):1043–1056. https://doi.org/10.1016/j.chemosphere.2005.05.002

    Article  Google Scholar 

  21. Blomqvist P, Persson B, Simonson M (2007) Fire emissions of organics into the atmosphere. Fire Technol 43(3):213–231. https://doi.org/10.1007/s10694-007-0011-y

    Article  Google Scholar 

  22. Lönnermark A (2007) Emission from landfill fires and fires in storage of waste. In: ECO-TECH 2007. Kalmar, pp 353–362

    Google Scholar 

  23. Lönnermark A, Stripple H, Rosén B, Haeger-Eugensson M, Axelsson J, Anderson-Sköld Y, Cousins AP, Simonson M (2007) Emissions from fire – methods, models and measurements. In: Interflam 2007, Royal Holloway College, University of London, UK. Interscience Communications, pp 1625–1630

    Google Scholar 

  24. Lönnermark A, Blomqvist P, Marklund S (2008) Emissions from simulated deep-seated fires in domestic waste. Chemosphere 70(4):626–639. https://doi.org/10.1016/j.chemosphere.2007.06.083

    Article  Google Scholar 

  25. Blomqvist P, Simonson McNamee M (2009) Estimation of CO2-emissions from fires in dwellings, schools and cars in the Nordic countries. SP Report 2009:13

    Google Scholar 

  26. Calogine D, Duplantier S (2010) Estimation of pollution by fire extinguishing water. Paper presented at the International Symposium on Loss Prevention and Safety Promotion in the Process Industry, Bruges, Belgium, http://hal-ineris.ccsd.cnrs.fr/ineris-00973572

  27. Blomqvist P, McNamee MS, Andersson P, Lönnermark A (2011) Polycyclic Aromatic Hydrocarbons (PAHs) quantified in large-scale fire experiments. Fire Technol 48(2):513–528. https://doi.org/10.1007/s10694-011-0242-9

    Article  Google Scholar 

  28. Calogine D, Marlair G, Bertrand JP, Duplantier S, Lopez-Cuesta JM, Sonnier R, Longuet C, Minisini B, Chivas-Joly C, Guillaume E, Parisse D (2011) Gaseous effluents from the combustion of nanocomposites in controlled-ventilation conditions. J Phys Conf Ser 304(1):012019. https://doi.org/10.1088/1742-6596/304/1/012019

    Article  Google Scholar 

  29. Simonson McNamee M, Blomqvist P, Andersson P (2011) Evaluating the impact of fires on the environment. Fire Safety Sci 10. https://doi.org/10.3801/IAFSS.FSS.10-43

  30. Wieczorek C, Ditch B, Bill R (2011) Environmental impact of automatic fire sprinklers: part 2. Experimental study. Fire Technol 47(3):765–779. https://doi.org/10.1007/s10694-010-0192-7

    Article  Google Scholar 

  31. Meacham B, Poole B, Echeverria J, Cheng R (2012) Fire safety challenges of green buildings. Final Report. Fire Research. The Fire Protection Research Foundation, Online. https://www.nfpa.org/News-and-Research/Data-research-and-tools/Building-and-Life-Safety/Fire-Safety-Challenges-of-Green-Buildings

  32. Blais M, Carpenter K (2015) Flexible polyurethane foams: a comparative measurement of toxic vapors and other toxic emissions in controlled combustion environments of foams with and without fire retardants. Fire Technol 51(1):3. https://doi.org/10.1007/s10694-013-0354-5

    Article  Google Scholar 

  33. Krüger S, Hofmann A, Berger A, Gude N (2016) Investigation of smoke gases and temperatures during car fire – large-scale and small-scale tests and numerical investigations. Fire Mater 40(6):785–799. https://doi.org/10.1002/fam.2342

    Article  Google Scholar 

  34. Lecocq A, Eshetu GG, Grugeon S, Martin N, Laruelle S, Marlair G (2016) Scenario-based prediction of Li-ion batteries fire-induced toxicity. J Power Sources 316:197–206. https://doi.org/10.1016/j.jpowsour.2016.02.090

    Article  Google Scholar 

  35. Larsson F (2017) Lithium-ion battery safety – assessment by abuse testing, fluoride gas emissions and fire propagation. Doctoral Thesis, Chalmers tekniska högskola, Gothenburg

    Google Scholar 

  36. Truchot B, Fouillen F, Collet S (2018) An experimental evaluation of toxic gas emissions from vehicle fires. Fire Saf J 97:111–118. https://doi.org/10.1016/j.firesaf.2017.12.002

    Article  Google Scholar 

  37. McNamee M, Truchot B, Marlair G, Meacham BJ (2020) Research roadmap: environmental impact of fires in the built environment. Final Report. FPRF Research Report. Fire Protection Research Foundation, Online

    Google Scholar 

  38. Wilson RB (1993) Review of development and application of CRSTER and MPTER models. Atmos Environ Part B Urban Atmos 27B(1):41

    Article  Google Scholar 

  39. Turner DB (1985) Proposed pragmatic methods for estimating plume rise and plume penetration through atmospheric layers. Atmos Environ (00046981) 19(7):1215

    Article  Google Scholar 

  40. McGrattan KB (2003) Smoke plume trajectory modeling. Spill Sci Technol Bull 8(4):367–372. https://doi.org/10.1016/S1353-2561(03)00053-7

    Article  Google Scholar 

  41. McGrattan K, Hostikka S, Floyd J, McDermott R, Vanella M (2020) Fire dynamics simulator, User’s guide (trans: division FR). Vol NIST Special Publication 1019, 6th edn. NIST National Institute of Standards and Technology, Gaithersburg. https://doi.org/10.6028/NIST.SP.1019

    Book  Google Scholar 

  42. Amon F, Gehandler J, McNamee R, McNamee M, Vilic A (2019) Measuring the impact of fire on the environment (Fire Impact Tool, version 1). RISE Research Institutes of Sweden

    Google Scholar 

  43. Holland P (2017) Environmental Protection Handbook for the Fire and Rescue Service (trans: Office CP). 2nd edn. Fire and Rescue Service, The Environmental Agency, Natural Resources Wales and Norther Irelad Environment Agency, online. https://www.ukfrs.com/sites/default/files/2017-09/Environment%20Agency%20and%20DCLG%20environmental%20handbook.pdf

  44. Mulholland GW (2008) Smoke production and properties. SFPE handbook of fire protection engineering 4

    Google Scholar 

  45. ASTM (2020) ASTM E2506 - standard guide for developing a cost-effective risk mitigation plan for new and existing constructed facilities. Vol ASTM standard E2506. ASTM International, Conshohocken, PA. https://www.astm.org/Standards/E2506.htm

    Google Scholar 

  46. ASTM (2020) ASTM E1185 – standard guide for selecting economic methods for evaluating investments in buildings and building systems. Vol ASTM Standard E1185. ASTM International, Conshohocken, PA. https://www.astm.org/Standards/E1185.htm

    Google Scholar 

  47. Abt KL, Butry DT, Prestemon J, Scranton S (2015) Effect of fire prevention programs on accidental and incendiary wildfires on tribal lands in the United States. J Wildland Fire 26:749–762. https://doi.org/10.1071/WF14168

    Article  Google Scholar 

  48. ASTM (2020) ASTM E964 – standard practice for measuring benefit-to-cost and savings-to-investment ratios for buildings and building systems. Vol ASTM Standard E964. ASTM International, Conshohocken. https://www.astm.org/Standards/E964.htm

    Google Scholar 

  49. ASTM (2017) ASTM E917 – standard practice for measuring life-cycle costs of buildings and building systems. Vol ASTM Standard E917. ASTM International, Conshohocken, PA. https://www.astm.org/Standards/E917.htm

    Google Scholar 

  50. ASTM (2020) ASTM E1074 – standard practice for measuring net benefits and net Savings for Investments in buildings and building systems. Vol ASTM Standard E1074. ASTM International, Conshohocken. https://www.astm.org/Standards/E1074.htm

    Google Scholar 

  51. ASTM (2020) ASTM E1057 – standard practice for measuring internal rate of return and adjusted internal rate of return for Investments in Buildings and Building Systems. Vol ASTM Standard E1057. ASTM International, Conshohocken. https://www.astm.org/Standards/E1057.htm

    Google Scholar 

  52. ASTM (2020) ASTM E1121 – standard practice for measuring payback for Investments in Buildings and Building Systems. Vol ASTM Standard E1121. ASTM International, Conshohocken. https://www.astm.org/Standards/E1121.htm

    Google Scholar 

  53. Helgeson JF, Zhang PJ (2020) Economic decision guide software (EDGe$) online tutorial: wildland-urban Interface (WUI) case study. Vol NIST Special Publication 1260. NIST National Institute of Standards and Technology, Gaithersburg. https://doi.org/10.6028/NIST.SP.1260

    Book  Google Scholar 

  54. Gilbert SW, Butry DT, Helgeson JF, Chapman RE (2015) Community resilience economic decision guide for buildings and infrastructure systems., vol NIST Special Publication 1197. NIST National Institute of Standards and Technology, Gaithersburg. https://doi.org/10.6028/NIST.SP.1197

    Book  Google Scholar 

  55. Chapman RE, Butry DT, Huang AL, Thomas DS (2010) Economics of egress alternatives and life-safety costs. Vol NIST Special Publication 1109. NIST National Institute of Standards and Technology, Gaithersburg. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1260.pdf

    Google Scholar 

  56. Butry D, Chapman R, Huang A, Thomas D (2012) A life-cycle cost comparison of exit stairs and occupant evacuation elevators in tall buildings. Fire Technol 48(2):155–172. https://doi.org/10.1007/s10694-010-0203-8

    Article  Google Scholar 

  57. Kneifel J, Webb D (2020) Life cycle costing manual for the Federal Energy Management Program. NIST National Institute of Standards and Technology, Washington, DC. https://doi.org/10.6028/NIST.HB.135-2020

    Book  Google Scholar 

  58. Lavappa PD, Kneifel J (2020) Energy Price indices and discount factors for life-cycle cost analysis – 2020. Annual supplement to NIST handbook 135. NIST National Institute of Standards and Technology, Washington, DC. https://doi.org/10.6028/NIST.IR.85-3273-35

    Book  Google Scholar 

  59. DoE (2020) Building life cycle cost programs. Office of Energy Efficiency & Renewable Energy. https://www.energy.gov/eere/femp/building-life-cycle-cost-programs. Accessed Jan 2020

    Google Scholar 

  60. Guinée JB, Heijungs R, Huppes G, Zamagni A, Masoni P, Buonamici R, Ekvall T, Rydberg T (2011) Life cycle assessment: past present and future. Environ Sci Technol 45(1):90–96. https://doi.org/10.1021/es101316v

    Article  Google Scholar 

  61. ISO (2006) 14040:2006 environmental management – life cycle assessment – principles and framework. ISO International Standards Organisation, Geneva. https://www.iso.org/obp/ui/#iso:std:iso:14040:ed-2:v1:en

    Google Scholar 

  62. ISO (2006) 14044:2006 Environmental management – Life Cycle Assessment – Requirements and guidelines. ISO International Standards Organisation, Geneva. https://www.iso.org/standard/76122.html

    Google Scholar 

  63. Simonson M, Blomqvist P, Boldizar A, Möller K, Rosell L, Tullin C, Stripple H, Sundqvist JO (2000) Fire-LCA model: TV case study. SP Report: 2000:13. Swedish National Testing and Research Institute

    Google Scholar 

  64. Amon F, Gehandler J, Stahl S, Tomida M, Meacham B (2016) Development of an environmental and economic assessment tool (Enveco tool) for fire events. Springer, New York

    Book  Google Scholar 

  65. Simonson M, Boldizar A, Tullin C, Stripple H, Sundqvist JO (1998) The incorporation of fire considerations in the life-cycle assessment of polymeric composite materials. A preparatory study. SP Rapport. http://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-4424

  66. Andersson P, Simonson M, Rosell L, Blomqvist P, Stripple H (2003) Fire-LCA model: furniture study. SP rapport: 2003:22. Sveriges provnings- och forskningsinstitut (SP)

    Google Scholar 

  67. Leontief W (1970) Environmental repercussions and the economic structure: an input-output approach. Rev Econ Stat 52(3):262–271. https://doi.org/10.2307/1926294

    Article  Google Scholar 

  68. Rebitzer G, Loerincik Y, Jolliet O (2002) Input-output life cycle assessment: from theory to applications 16th discussion forum on life cycle assessment Lausanne, April 10, 2002. Int J Life Cycle Assess 7(3):174–176. https://doi.org/10.1007/BF02994053

    Article  Google Scholar 

  69. Chen C, Zhang X, Chen J, Chen F, Li J, Chen Y, Hou H, Shi F (2020) Assessment of site contaminated soil remediation based on an input output life cycle assessment. J Clean Prod 263. https://doi.org/10.1016/j.jclepro.2020.121422

  70. Islam S, Ponnambalam SG, Lam HL (2016) Review on life cycle inventory: methods, examples and applications. J Clean Prod 136:266–278. https://doi.org/10.1016/j.jclepro.2016.05.144

    Article  Google Scholar 

  71. Bare JC, Norris GA, Pennington DW, McKone T (2003) TRACI – the tool for the reduction and assessment of chemical and other environmental impacts. J Ind Ecol 6:49–78

    Article  Google Scholar 

  72. Bare J, Gloria T, Norris G (2006) Development of the method and U.S. normalization database for life cycle impact assessment and sustainability metrics. Environ Sci Technol 40(16):5108–5115. https://doi.org/10.1021/es052494b

    Article  Google Scholar 

  73. Bare J (2011) TRACI 2.0: the tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Technol Environ Policy 13(5):687–696. https://doi.org/10.1007/s10098-010-0338-9

    Article  Google Scholar 

  74. Bare J, Hofstetter P, Pennington D, de Haes H (2000) Midpoints versus endpoints: the sacrifices and benefits. Int J Life Cycle Assess 5(6):319–326

    Article  Google Scholar 

  75. Andersson P, Simonson M, Tullin C, Stripple H, Sundqvist JO, Paloposki T (2004) Fire-LCA Guidelines, vol SP Report 2004:43. SP Technical Research Institute of Sweden, Borås

    Google Scholar 

  76. Lippiatt B, Greig A, Lavappa P (2010) BEES (Building for Environmental and Economic Sustainability) software. http://www.nist.gov/el/economics/BEESSoftware.cfm. Accessed 30 July 2019

  77. NIST (2020) BEES – building for environmental and economic sustainability. NIST National Institute of Standards and Technology. https://www.nist.gov/services-resources/software/bees. Accessed Jan 2020

    Google Scholar 

  78. Standardization ECf (2011) EN 15978:2011 Sustainability of construction works – Assessment of environmental performance of buildings – Calculation method

    Google Scholar 

  79. Bhargava M, Sirabian R (2011) SITEWISE (TM) Version 3 Users Guide, 3rd edn. Battelle Memorial Institute, Port Hueneme

    Google Scholar 

  80. National Wildlife Federation (2017) Wildlife guide. The National Wildlife Federation. https://www.nwf.org/educational-resources/wildlife-guide/. Accessed January 2020

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret McNamee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McNamee, M., Butry, D., Kneifel, J. (2023). Tools and Techniques for Impact Analysis. In: Meacham, B.J., McNamee, M. (eds) Handbook of Fire and the Environment. The Society of Fire Protection Engineers Series. Springer, Cham. https://doi.org/10.1007/978-3-030-94356-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94356-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94355-4

  • Online ISBN: 978-3-030-94356-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics